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Abstract

We develop a tractable dynamic Roy model in which infinitely-lived workers choose occu-

pations to maximize their lifetime utility. In our setting, a worker’s human capital is driven

by his labor market choices, given idiosyncratic occupation-specific productivity shocks and

the costs of switching occupations. We characterize the equilibrium assignment of workers

to jobs and show that the resulting evolution of aggregate human capital across occupa-

tions ultimately determines the long-run rate of growth of the economy. We then use our

model to quantitatively study the dynamic impact of labor-saving technical changes, e.g.

automation, on the workers’ occupational choices, and on the economy’s income inequality,

job polarization and long-run growth.
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1 Introduction

Technological and organizational advances that can greatly expand production possibilities are

often biased against a subset of occupations –and, possibly, against a large number of workers.

The introduction of such advances can substantially disrupt the ongoing reassignment of workers

across jobs, a process that occurs naturally according to the comparative advantage of each worker.

Labor market disruptions of this nature have been highlighted by recent works –which we discuss

below– that single out the introduction of new forms of capital, e.g., computers and robots,

automation, and off-shoring, as the key drivers of the observed increase in earnings inequality and

job polarization. Basing their analysis on static Roy models, these papers capture how individual

comparative advantage and self-selection shape the heterogeneous impact across workers, but

abstract from dynamic aspects of occupational choices and human capital accumulation, which,

as we show in this paper, are crucial to determine the the long-run rate of growth rate of the

economy and the ultimate impact on inequality and on the welfare of workers.

In this paper, we develop a dynamic Roy model of occupational choice with human capital

accumulation and use it to explore the general equilibrium effects of new technologies on the labor

market. In our model, infinitely-lived workers can switch occupations in any period to maximize

their lifetime utility. In our setting, a worker’s human capital is driven by his labor market

choices, given idiosyncratic occupation-specific productivity shocks and the costs of switching

occupations. We first characterize the equilibrium assignment of workers to jobs. A key result is

that the resulting evolution of aggregate human capital across occupations ultimately determines

the long-run rate of growth rate of the economy. We then use the model to quantitatively study

how worker’s individual occupation choices change with the introduction of new technologies, and

in turn how this choices shape the equilibrium allocation of workers to different jobs, the dynamics

of aggregate human capital, the behavior of earnings inequality, the evolution of the labor share,

and the welfare of the different workers in the economy.

The paper has a number of methodological contributions. First, we fully characterize the so-

lution of the recursive problem of a worker under standard CRRA preferences when the worker

is subject to a large number of labor market opportunities shocks in every period affecting her

comparative advantage in different occupations. Thus, we bridge recent quantitative work that

uses static assignment Roy models with extreme-value shocks with the standard recursive mod-

els for households in macroeconomics. In this way, our model generates transition probabilities

across occupations over time. Second, we fully characterize the asymptotic behavior of aggregate

economies implied by the individual dynamic occupation choices of workers. For any given vector

of skill prices, we show that the economy converges to a unique invariant distribution of workers.

Although the Roy model has been studied and used in great length, we uncover important new

features which are present only in a dynamic context. We show that, generically, the reallocation

of workers to occupations combined with the accumulation of occupational human capital leads

to sustained growth over time for the economy. The growth rate in our model is endogenously
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determined by the equilibrium occupational choices, and thus, changes in economic conditions

that alter worker’s choices affect the long-run growth rate of the economy. Third, we embedded

the workers’ problem in a fairly rich general equilibrium environment where different types of

workers are allocated to different tasks in production. We derive a very transparent and tractable

aggregation that arises from the assignment of workers to tasks. Then, we show the existence of

a competitive-equilibrium balanced-growth path, and for a simple version of our model we can

also characterize uniqueness. Fourth, by incorporating two forms of physical capital, we provide

a quantitative framework to study the impact of automation and other labor-saving technologi-

cal improvements on the earnings of different occupations. Our model of production and tasks

generates an intuitive expression that directly links the labor share of the economy with wages,

rental rates and the productivity of different types of labor and capital, allowing us to study the

effects of technology on the labor share of the economy. Fifth, we extend recent dynamic-hat-

algebra methods and show they can be used with more general preferences (CRRA) and with

human capital accumulation. As with other hat-algebra methods, the advantage is a substantially

reduced set of calibrated parameters needed for the quantitative application of the model. Sixth,

we discuss a variety of relevant extensions of our baseline model, ranging from workers’ age and

ex-ante heterogeneity, endogenous on-the-job training and occupation-specific automation.

Using our model we make a number of substantial contributions. Mapping our model to the

moments observed in the 1970s for the U.S. economy, we account for the changes in employment

across occupations and the increase in earnings inequality that arise from labor-saving technolog-

ical advances. An important change observed in U.S. labor markets in the past few decades is

the polarization of skills in the labor market. That is, the decline of employment in middle-skill

occupations, like manufacturing and production occupations, and the growth of employment in

both high and low-skill occupations, like managers and professional occupations on one end, and

assisting or caring for others on the other. Using our model we show how some labor-saving

technical improvements can jointly explain the increase in polarization, earnings inequality and

occupational mobility in U.S. labor markets.

In addition, our dynamic model highlights the long-lasting impact of permanent, but once-

and-for-all technological changes. Indeed, in our dynamic setting, once-and-for-all changes in

automation or other technological changes can lead to sustained growth effects. Our quantitative

exercise highlight how this growth effect changes the conclusion on earnings inequality and welfare.

We emphasize that the welfare and inequality implications for technological changes can be vastly

richer than those obtained in other settings as they originate not only from changes in skills prices

in each period but also on changes in the equilibrium growth rate of earnings. Thus, on the one

hand, the positive impact on some workers is not only due to higher level of earnings but also from

a faster growth. On the other hand, some workers can be worse-off due to lower levels of earnings

and a higher rate at which they change occupations. These aspects are fully incorporated in our

exercises.
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We first consider the individual worker’s problem. Section 2 studies the dynamic problem of

a worker that chooses occupations to maximize lifetime utility. Taking as given a vector of skill

prices or unitary wages per occupation, we assume that each period each worker is subject to

idiosyncratic labor market opportunities. On the basis of these labor market opportunities, the

choice of occupations not only determines the earnings for the next period but also the impact of

the human capital of the worker for subsequent occupation choices. Assuming standard CRRA

preferences and extreme value (Frechet) distributed labor market opportunities, we characterize

the Bellman equation of the worker. We show that the resulting distribution of the value function

is closely related to one of the three extreme value distributions, Frechet, Gumbel or Weibull,

depending on whether the coefficient of relative risk aversion is lower than, equal to or higher than

one, respectively. In all these cases, conditions for existence and uniqueness are provided. Simple

recursion formulas ensue, which makes for trivial computations. The worker’s decision problem

induces very simple formulas for the transition probabilities of workers across human capital and

the law of motion for individual human capital and earnings, which we later use to calibrate the

model.

From the worker’s individual occupation choices we derive the law of motion for the population

of workers across occupations. For any given positive vector of skills prices, we show that there

exists a unique invariant distribution of workers. More interestingly, we also show that a simple

aggregation property holds, which allows us to write down the transition matrix for the vector

of aggregate human capital across occupations. We show that the human capital of the country

cannot settle down to an invariant state, and instead, necessarily, grows over time. The dominant

eigenvalue of the aggregate human capital transition matrix is always unique, positive and real

and it governs the long-run growth rate of the economy. In other words, we show that our dynamic

Roy model with human capital accumulation provides a novel endogenous channel for aggregate

growth. We examine how changes in the relative price of skills leads to differences in the assignment

of workers to jobs, the evolution of human capital and in turn the long-run growth of the economy.

In Section 3 of the paper we embed the previous analysis in a dynamic general equilibrium

model. We assume that output is produced using two forms of physical capital. The first physical

capital is in the form of structures and other capital complementary to workers. The second form

of physical capital is in the form of machines or some types of equipment, which directly compete

and may substitute workers in production. In our setting, output is produced by performing a

large set of tasks. An assignment of workers and machines to the different tasks is presented, where

the costs of the different factors, relative to their underlying productivity, governs which tasks are

performed by machines and which are done by different types of workers. We characterize the

labor-share of the economy as a simple function of wages in different occupations, rental rates, and

labor and machine productivity and show how changes in this variable affect the labor share. The

equilibrium production assignment of tasks-workers-machines gives rise to a transparent and very

tractable aggregation of the economy. Over time, the accumulation of both forms of capital are
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determined by standard Euler equations, as in the neoclassical growth model. More novel, however,

given a constant productivity terms for both capital stocks and for the vector of human capital, the

underlying long-run growth rate of the economy is determined by the transition matrix of human

capital, as derived from the dynamic occupation choices of workers. We show the existence, and

in a simple case uniqueness, of the competitive-equilibriumn balanced-growth path (BGP) of the

economy. As noted above, the growth rate is endogenously determined by the Perron root of the

transition matrix, and thus, it endogenously changes with permanent but once-and-for all changes

in the vector of relative productivities. Thus, changes in the economy’s growth rate lie at the

heart of the impact of automation and other technological changes.

In Section 4 we examine the dynamic response of the economy to changes in the productivity

of machines and workers in different occupations. Here, we extend the recent dynamic hat algebra

methods to a larger set of preferences and to human capital accumulation. The main advantage

of these methods is that they avoid the estimation or calibration of a large number of parameters,

and instead use moments that can be readily retrieved from the data, lowering the burden of the

computational problem.

1.1 Related Literature:

Our work is related to a large literature in labor economics and macroeconomics studying the effects

of labor-saving technology in the labor market. This literature has been carefully summarized in

the work of Acemoglu and Autor (2011). They analyze how changes in technology may have

an asymmetric impact on workers, leading to polarization and earnings inequality. In particular,

they argue that “recent technological developments have enabled information and communication

technologies to either directly perform or permit the offshoring of a subset of the core job tasks

previously performed by middle skill workers, thus causing a substantial change in the returns to

certain types of skills and a measurable shift in the assignment of skills to tasks”. They propose

task-based framework for analyzing the allocation of skills to tasks and for studying the effect of

new technologies on the labor market and their impact on the distribution of earnings. In our

model workers human capital and skills evolve endogenously and are a result of past labor market

decisions. We study the dynamics of adjustment of an economy to an increase in labor-saving

technologies affecting workers’ occupational decisions, human capital accumulation and earnings

inequality.

Krusell, Ohanian, Rios-Rull, and Violante (2000) study how skill biased technical change affect

the skill premium and earnings inequality. They argue that the sharp reduction in the price of

equipment coupled with differences in capital-skill complementarity are responsible for a large

fraction of the increase in inequality between education groups. In their paper, labor markets

are segmented by education and workers cannot switch their type. In our case, we follow a task-

approach with labor markets segmented at the level of occupations. In our model, workers have

different skills and a comparative advantage in performing different tasks, they accumulate human
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capital, and can switch to a different labor market. In this way, workers have a way to “escape”

the negative effects of technology but at a cost in term of a human capital depreciation.

Kambourov and Manovskii (2009) argue that wage inequality and occupational mobility are

intimately related. They show this using a general equilibrium model with occupation-specific

human capital and two economies with different levels of occupational mobility. Relative to them,

we follow a task-based approach, where workers have a comparative advantage in performing

different tasks. In our setup, workers search over labor markets is directed and workers self-select

into the most valuable occupations. We analyze the effects of a technology shock and compute

transition between balanced-growth paths.

Our dynamic Roy model model extends an important recent literature using static Roy model

with Frechet distributed shocks building in the setup by Eaton and Kortum (2002). Some recent

examples include Lagakos and Waugh (2013), who analyze the assignment of workers to rural

or urban work, Hsieh, Hurst, Jones, and Klenow (2013) who study how frictions in the labor

market across workers with different characteristics (race, gender) generate misallocation and

productivity costs, and Burstein, Morales, and Vogel (2018), who use an assignment model with

many labor groups, equipment types, and occupations, in which changes in inequality are driven

by the asymmetric impact of changes in the workforce composition, the occupation demand, and

new technologies. Methodologically, we extend this type of models to a dynamic context where

workers face a trade-off between staying in a low paying occupation or switching to a better labor

market at the expense of a mismatch of their human capital.

In addition, we connect to the recent works by Acemoglu and Restrepo (2018) and Acemoglu

and Restrepo (2017) who study how machines and industrial robots affect different workers and

labor markets. In addition, they argue that part of the decline in the labor share discussed

in Karabarbounis and Neiman (2013) may be explained by this type of technological advances.

Acemoglu and Restrepo (2018) propose a task-based approach between labor and machines to

analyze how new technologies may displace labor from some tasks. We extend their setup to

different types of labor and show how model of production delivers a a very intuitive expression

for the labor share that can be directly linked to the evolution of fundamentals.

Finally, we extend the recent dynamic-hat-algebra methods of Caliendo, Dvorkin, and Parro

(2019) to allow for more general preferences and for human capital accumulation. Moreover, we

show existence of the competitive general-equilibrium balanced-growth path, and in a simpler case

we also show uniqueness of the general equilibrium.
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2 A Canonical Worker’s Problem

We consider an infinite horizon maximization problem for a worker with standard preferences. At

any time t = 0, 1, 2, ..., the utility of the worker is given by

Ut =
(ct)

1−γ

1− γ
+ E

[
∞∑
s=1

βs
(ct+s)

1−γ

1− γ

]
,

where 0 < β < 1 is a discount factor (which accounts for a constant survival probability) and

γ ≥ 0 is the coefficient of relative risk aversion (CRRA.) For γ = 1, we interpret the flow utility

to be logarithmic, i.e. ln ct.

The worker starts each period t = 1, 2, ... attached to one of j = 1, ..., J occupations, carrying

over from the previous period an absolute level of human capital h > 0. Available for the next

period, the worker realizes a vector εt =
[
ε1t , ε

2
t , ...ε

`
t...,ε

J
t

]
∈ RJ

+ of labor market opportunities.

Each entry in the vector corresponds the labor market opportunity in the respective occupation.

On the basis of these opportunities, the worker chooses to either stay in the current occupation j

or to move to an alternative occupation `.

Switching occupations entails costs (or returns) which we specify as follows: A J × J human

capital transferability matrix, with strictly positive entries, τj`, determines the fraction of the

human capital h that can be transferred from the current occupation j to a new occupation `. On

average, there is depreciation if τj` < 1 or positive accumulation if τj` > 1. The diagonal terms,

τjj, may be higher than one, capturing learning-by-doing, i.e. the accumulated experience capital

of a worker as he spends more time in an occupation j. These diagonal terms τjj may vary by

occupation j. The off-diagonal terms τj` may be less than one to capture a potential mismatch

between the human capital acquired in one occupation and the productivity of the worker in a

different occupation. Still, some of the off-diagonal terms could be greater than one, capturing skill

transferability and cross-occupation training or upgrading. In our specification, these occupation-

switching costs have a permanent impact on the human capital of the worker for all future periods

and for all future occupation choices.1

The human capital of the worker evolves according to the labor market opportunities εt and

the occupation choice of the worker. Given a level of human capital, h, a current occupation j,

and a vector εt ∈ RJ
+ of labor market opportunities, the vector

ht τj,· ⊗ εt ∈ RJ
+,

describes how many efficient units of labor services, or effective human capital, the worker can

provide for each of the alternative occupations ` = 1, ..., J . Here the operator ⊗ denotes an

element-by-element multiplication. After choosing which occupation to take, the scale of the

1In Appendix B we extend the model to allow for both, transitional and permanent costs of switching occupa-
tions.
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human capital level for the worker for the next period would be

ht+1 = htτjt,`t+1 ε`,t, (1)

where jt and `t+1 indicate, respectively, the occupations at period t and t+ 1.

To set up our framework, in this section we focus on the canonical worker’s problem given

a time-invariant vector of strictly positive (and finite) wages per unit of human capital w =[
w1,w2,...w`...,wJ

]
. Therefore, the worker’s earnings for the period given her current occupation

j are wjht. In our model, workers are dynamic optimizers, with their human capital returns as

their sole source of income in every period. Therefore, the worker’s consumption for each period

is simply the current earnings wjht.

We now set up the problem of the worker recursively, and provide additional structure to

derive a sharp characterization of the optimal choices. Denote by V (j, h, ε) the expected life-time

discounted utility of the worker. The Bellman Equation (BE) that defines this value function is,

V (j, h, ε) =
(wj h)

1−γ

1− γ
+ βmax

`
{Eε′V [`, h′, ε′]} , (2)

where Eε′ [·] is the expectation over the next period’s vector of job market opportunities and h′ is

given by equation (1.)

To characterize this BE, we first show that it can be factorized, i.e. its value can be decomposed

into a factor that depends only on the current occupation and labor market realizations, (j, ε),

and another factor that depends only on the absolute level of human capital, h. This can be

done for any generic distribution for the labor market shocks ε for which an expectation satisfies

a boundedness condition. In all what follows, we assume that ε is distributed independently over

time and across workers, and that all the required moments involving ε are finite and well defined.

First, note that if occupation ` is chosen, then, the next period human capital is h′ = h τj`ε`.

Then, observe that the period utility function is homogeneous of degree 1 − γ in h. Therefore,

under the hypothesis that the value V (j, h, ε) is homogeneous of degree 1 − γ in h, for any

pair (j, ε), it can be factorized into a real value v (j, ε) and a human capital factor h1−γ , i.e.,

V (j, h, ε) = v (j, ε)h1−γ.2 Under this hypothesis, the Bellman Equation (2) becomes

v (j, ε)h1−γ =

(
(wj)

1−γ

1− γ
+ β max

`

{
Eε′ [v (`, ε′)]

(
τj,`ε

`
)1−γ

})
h1−γ.

Simplifying out the term h1−γ we end up with

v (j, ε) =
(wj)

1−γ

1− γ
+ βmax

`

{(
τj,`ε

`
)1−γ

Eε′ [v (`, ε′)]
}

, (3)

2For the logarithmic case, γ = 1, V (j, h, ε) = uj + β
[
max`

{
v` +

[ln(h)+ln(τj,`ε`)]
1−β

}]
, as shown in the appendix.
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which verifies the factorization hypothesis. Therefore, the characterization of V (j, h, ε) boils down

to the characterization of v (j, ε), a random variable that depends on each realization ε. For all

occupations j = 1, ...J , denote by vj the conditional expectation of this random variable, i.e.,

vj ≡ Eε [v (j, ε)] .

Using this definition, and taking the expectation Eε [·] in both the right- and left-hand sides of

(3), the equation reduces to a recursion on vj:

vj =


(wj)

1−γ

1−γ + βEε max`

[{[
τj,` ε

`
]1−γ

v`
}]

, for γ 6= 1,

lnwj + βEε

[
max`

{
v` +

ln(τj,`ε`)
1−β

}]
, for γ = 1.

(4)

For all γ ≥ 0, the following lemma establishes simple conditions on the stochastic behavior of

the labor market opportunities of workers, that guarantee the existence and uniqueness of values

v ∈ RJ that solve (4). All along, we assume that τj,` > 0 for all j, ` and that the support of ε` is

[0,∞) for all `.

Depending on the value of γ, and for each j = 1, ..., J , we define the terms, Φj as follows:

Φj ≡


Eε max`

{
[τj,` ε`]

1−γ} , for 0 ≤ γ < 1,

Eε max` {ln (τj,`ε`)} , for γ = 1.

Eε min`
{

[τj,` ε`]
1−γ} , for γ > 1.

Also, conditioning on the relevant definition of Φj for each γ, we define

Φ̄ = max
j

Φj.

The following lemma shows that if the average labor market opportunities available to workers are

bounded, as summarized by bounds on Φ̄, then, we can guarantee that the dynamic programming

problem (4) has a unique and well-defined solution.

Lemma 1 Let w ∈ RJ
+ be the vector of unitary wages across all occupations J . Assume that

preferences are characterized by a CRRA γ ≥ 0 and that the matrix τj,` and labor market oppor-

tunities ε satisfy the assumptions above. Then: (a) for all 0 < γ 6= 1, if βΦ̄ < 1, then there exists

a unique, finite v ∈ RJ that solves vj =
(wj)

1−γ

1−γ + βEε max`

[{[
τj,` ε

`
]1−γ

v`
}]

for all j. Moreover,

if γ < 1, the fixed point v is positive (v ∈ RJ
+) and if γ > 1, the fixed point v is negative (v ∈ RJ

−).

(b) For the special case of log preferences, γ = 1, if −∞ < Φj < +∞, ∀j, and β < 1, then, there

exists a unique, finite v ∈ RJsuch that vj = lnwj + βEε

[
max`

{
v` +

ln(τj,`ε`)
1−β

}]
for all j.

The proofs for this and all other analytical results in this paper are in Appendix A.
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This lemma only verifies existence and uniqueness of the conditional expectations vj, while

the realization ε of the labor market opportunities determines the actual realized value v (j, ε). In

what follows we impose additional structure so we can characterize the behavior of v (j, ε) and

the optimal occupation choices derived for the solution to the dynamic programming problem of

workers. To this end, we add the assumption that each element in the vector of labor market

opportunities ε is distributed according to an extreme value distribution. Specifically, we impose

that in each period, the labor market opportunity ε` shocks for each labor market `, are each

independently distributed according to a Frechet distribution with scale parameter λ` > 0, and

curvature α > 1. Notice that the curvature parameter is the same for all occupations but the

scale parameters are allowed to vary across occupations.

Having impossed a Frechet distribution for ε, define for all pairs j, ` ∈ J × J ,

Ωj` =


τ

(1−γ)
j` v`, for γ 6= 1,

ln τj`
1−β + v`, for γ = 1.

(5)

Then, the normalized BE can be succinctly rewritten as

v (j, ε) =


uj + βmax`

{
Ωj`

(
ε`
)1−γ

}
, for γ 6= 1,

uj + βmax`

{
Ωj` +

ln(ε`)
1−β

}
, for γ = 1.

(6)

We now provide a simple result that indicates that given any admissible vector v ∈ RJ ,

regardless of whether it is or not the fixed point of the BE (4), the resulting random variable

v (j, ε) is closely related to one of the extreme value distributions: (a) if 0 ≤ γ < 1, then v (j, ε)

is related to a Frechet with curvature parameter α/ (1− γ); (b) if γ = 1, then v (j, ε) is related

to a Gumbel with shape parameter 1/α; (c) if γ > 1, then v (j, ε) is related to a Weibull with

curvature parameter α/ (γ − 1).

Lemma 2 Derived Distributions. Let ε` be a random variable distributed Frechet with scale

parameter λ` > 0 and curvature α > 1, i.e. its c.d.f. is Fε (ε) = e
−
(
ε
λ`

)−α
. Define:

x` ≡

{ (
ε`
)1−γ

for 0 ≤ γ 6= 1

ln
(
ε`
)

for γ = 1.

Then x` is distributed as follows:

x` ∼


Frechet

(
α

1−γ , (λ`)
1−γ
)

for 0 ≤ γ < 1,

Gumbel
(

1
α

, ln (λ`)
)

for γ = 1,

Weibull
(

α
γ−1

, (λ`)
γ−1
)

for γ > 1.
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It follows that the terms in curly brackets in (6), with the product of Ω and the transformation

of ε with respect to the CRRA parameter, will follow one these distributions.

We now complete the characterization of the worker’s problem, under the assumption that all

the entries of ε are independently Frechet distributed. The following theorem provides a simple,

sharp characterization for the fixed point problem vj that solves (4) and for the optimal occupations

decision of workers.

Theorem 1 Individual Problems. Assume for all ` = 1, ...J , the shocks ε` are independently

distributed Frechet with shape α > 1 and scales λ` > 0. Assume also that all w` are strictly positive

and that either (i) γ 6= 1 and βΦ̄ < 1 or (ii) γ = 1, β < 1 and −∞ < Φj < +∞ for all j. Then:

(i) If 0 ≤ γ < 1, the expected values vj for j = 1, ..., J solve the fixed point problem

vj =
(wj)

1−γ

1− γ
+ β Γ

(
1− 1− γ

α

)[ J∑
`=1

(
v`
) α

1−γ (τj`λ`)
α

] 1−γ
α

.

A finite solution v ∈ RJ
+ for this BE exists and is unique. Moreover, the proportion of workers

switching from occupation j to occupation ` at the end of the period is given by:

µ (j, `) =

[
λ`τj`

(
v`
) 1

1−γ
]α

∑J
k=1

[
λkτjk (vk)

1
1−γ

]α .

(ii) If γ = 1 the expected values vj for j = 1, ..., J , solve the fixed point problem

vj = log(wj) +
β

α (1− β)
log

[
J∑
`=1

exp
(
α (1− β)v` + α log(τj`) + α log(λ`) + ακ

)]
,

where κ is Euler’s constant. A solution v ∈ [v, v̄]J for this BE exists and is unique. Moreover, the

proportion of workers that switch from occupation j to occupation ` is given by:

µ (j, `) =
exp

(
α (1− β)v` + α log(τj`) + α log(λ`) + ακ

)∑J
k=1 exp (α (1− β)vk + α log(τjk) + α log(λk) + ακ)

.

(iii) If γ > 1, the expected values vj for j = 1, ..., J solve the fixed point problem

vj =
(wj)

1−γ

1− γ
− β Γ

(
1− 1− γ

α

)[ J∑
`=1

(−v`)
α

1−γ (τj`λ`)
α

] 1−γ
α

.

A solution v ∈ [v, 0]J for this BE exists and is unique. Moreover, the proportion of workers
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switching from occupation j to occupation ` at the end of the period is given by:

µ (j, `) =

[
λ`τj`

(
−v`

) 1
1−γ
]α

∑J
k=1

[
λkτjk (−vk)

1
1−γ

]α .

2.1 Implied Distributions of Workers and Human Capital

We now describe how the occupation choices of each worker shape up the limiting behavior of

the cross-section distribution of workers and aggregate human capital (and earnings) across the J

occupations in this economy.

Distribution of Workers Across Occupations. Notice that the homogeneity of the value

function implies that the transitions µj,` are independent of the human capital level h of the

worker. Let θt =
[
θ1
t , ..., θ

J
t

]
denote the J × 1 vector indicating the mass of workers in each of the

occupations j = 1, 2, ..., J at time t. As in this section we are taking the vector of wages w as time

invariant the transition matrix µ is also time invariant. Therefore, the evolution of θ is described

by following equation,

θt+1 = µT θt.

where superscript T indicates the transpose.

Under the assumptions that τj,` > 0, every entry of the stochastic matrix µ is positive, i.e.

for all j, `, µ (j, `) > 0. This is a basic mixing condition and from standard results for Markov

chains (e.g. Theorem 11.2. in Stokey, Lucas and Prescott, 1989) there exists a unique invariant

distribution

θ∞ = µT θ∞, (7)

and the economy will converge to it from any initial distribution θ0.

Distribution of Aggregate Human Capital Across Occupations. Given that the indi-

vidual labor market opportunities or productivity shocks for all workers are distributed Frechet, a

continuous distribution with full support in the positive reals, then the aggregate human capital

assigned to occupation j is given by,

Hj
t = θjt

∫ ∞
0

hφjt(dh),

where φjt(·) denotes the positive measure that describes the distribution of human capital levels h

across the workers in occupation j in period t.

Characterizing the evolution of Hj
t over time suffices to determine the general equilibrium of

the economy as we discuss in the following section. Towards that end, we first characterize the

conditional expectation of the shocks ε` for those workers that switch from any occupation j to

any occupation `:

Lemma 3 For all non-negative γ 6= 1, the expectation of the labor market opportunity shock ε` of

12



workers switching from j to ` is given by,

E
[
ε`|Ωj` ε

1−γ
` = max

k

{
Ωj`ε

1−γ
k

}]
= Γ

(
1− 1

α

)
λ` [µ (j,`)]−

1
α , (8)

where µ (j,`) is the corresponding occupation switching probabilities as derived in Theorem 1.

A worker with human capital h in occupation j will switch to occupation ` at the end of the

period with probability µ (j,`), bringing an average Γ
(
1− 1

α

)
τj` λ` [µ (j,`)]−

1
α h of human capital

skills to that occupation. DefineM to be the transition matrix of aggregate human capital, with

j, ` element defined as:

M (j,`) = Γ

(
1− 1

α

)
τj` λ` [µ (j,`)]1−

1
α .

The matrix M is time invariant when wages are constant over time. The linearity in h allows an

easy aggregation of human capital in each occupation and also to characterize the law of motion

for aggregate human capital. Let Ht =
[
H1
t , H

2
t , ..., H

J
t

]
be the vector of aggregate human capital

across all occupations j in period t. Then, for time t+ 1, that vector evolves according to

Ht+1 =MT Ht.

It is worth remarking that we can characterize the evolution of the average (or total) skills of

workers across the different occupations, without having to solve for the cross-section distribution

of skills and earnings. This result is useful since we can easily solve for the aggregate supply

of efficient units of labor in each occupation at each t. The matrix M is strictly positive, i.e.

M (j,`) > 0. Then, from the Perron-Frobenius theorem,3 the largest eigenvalue of M is always

simple (multiplicity one), real and positive. Moreover, the associated eigenvector to this so-called

Perron root, which we denote by GH , has all its coordinates, hj, j = 1, ..., J , strictly positive.

Moreover, in the limit, the behavior of all Hj
t will converge to

Hj
t+1 = GHH

j
t ,

for all j = 1, ...J . This is precisely the definition of a balanced-growth path (BGP) for the vector

of aggregate human capital {Ht}∞t=0. Notice that the model can naturally generate a positive

Perron eigenvalue GH > 0, i.e. sustained growth of the human capital of the workers, even if the

unitary wages wj and the cross-section distribution of workers θ∞ remains constant, and even if

the average realization ε` in each occupation is equal to one. The engine of growth here is that

workers continuously select the most favorable labor market opportunities.4

3See for example, Gantmacher (2000), Theorems 1 and 2 of Ch.XIII, Vol. II, page 53.
4This result is reminiscent of the mechanism in the models by Luttmer (2007) and Lucas and Moll (2014) in

which selection on favorable realization of idiosyncratic shocks endogenously generates growth at the aggregate
level. Note however that in our model it is possible for a worker to get a realization of shocks ε below one for all
components, which implies that human capital will decrease for this individual if τ ≤ 1.

13



We summarize the results for the implied population dynamics of workers and human capital

aggregates, {θt, Ht}∞t=0 in the following proposition.

Proposition 2 Assume that the unitary wage vector is strictly positive, w ∈ RJ
++, and that the

conditions for Theorem 1 hold. Then: (a) There exists a unique invariant distribution of workers,

i.e., θ∞ = µ θ∞, with θj∞ > 0 and
∑J

j=1 θ
j
∞ = 1. Moreover, the sequence {θt}∞t=0 induced by

(7) converges to θ∞ from any initial distribution θ0. (b) There is a unique BGP of aggregate

human capital across occupations, Hj
t /H

1
t = hj for all j, where hj is equal to the ratios of the jth

coordinate to the first coordinate of the Perron eigenvector. Moreover, the economy converges to

Hj
t+1 = GHH

j
t from any initial vector H0 ∈ RJ

+.

The problem of the worker presented so far can be easily extended to capture worker hetero-

geneity along permanent characteristics (gender, race, formal education) as well as age. As shown

in Appendix B, the setting can be quite flexible in allowing differences in group specific param-

eters (λgroup
` , τ group

j` ), thus allowing differentiating between the human capital accumulation that

arises from labor market experience from other factors that affect the human capital of workers.

Extending the model for age differences would capture differences in the horizon of workers and

their dynamic valuation of switching occupations.

In the next section, we embed the workers’ problem into a production economy, and show how

to extend the results derived here to characterize the general equilibrium of such an environment.

3 The General Equilibrium Model

We now set up our general equilibrium environment. First, we specify the production of final goods,

which defines the demand for the different types of labor and capital and the production price

of final goods. Second, we define competitive equilibria, where the price of goods, labor services

and capital clear all markets. Third, we provide a sharp characterization of the intratemporal

equilibrium conditions. Finally, we prove the existence of balance growth path (BGP) equilibria,

and discuss the sources of growth in this economy, which includes the sustained accumulation of

skills of workers as they switch occupations over their life-cycle.

3.1 The Environment

3.1.1 Production

We consider multiple types of workers and physical capital as factors of production of final goods.

Our setting encompasses features of the standard neoclassical model and of recent models of substi-

tution between workers and machines (e.g. Acemoglu and Restrepo (2018)), both of them within

a worker-task assignment model (e.g. Costinot and Vogel (2010).) First, as in standard macro

models, we allow for some forms of physical capital to operate as a complementary factor of all
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forms of labor. Second, as in Acemoglu and Restrepo (2018), we also allow some forms of physical

capital (machines) to compete with workers in the performance of tasks. As Costinot and Vogel

(2010), different types of workers must be be assigned across multiple production tasks according

to their comparative advantage, which is determined in general equilibrium. The resulting multi-

dimensional production setting allows for technological changes that have a heterogeneous impact

on the different types of labor.

Consider an economy with a single final good, which is produced according to a Cobb-

Douglas over some forms of physical capital, Kt, which encompasses structures and some forms of

equipement, and a bundle of tasks, Qt,

Yt = (Kt)
ϕ (Qt)

1−ϕ ,

where 0 < ϕ < 1. The bundle of tasks Qt is given by a CES production function defined over

many tasks. The provision of quantities qt(x) ≥ 0 for each task x in the continuum [0, 1], give

raise to a bundle of tasks Qt in the amount

Qt =

(∫ 1

0

[qt(x)]
η−1
η dx

) η
η−1

,

at time t. The quantity qt (x) of each task x is performed using different types of labor and/or

capital (machines.) In particular, extending the framework of Acemoglu and Restrepo (2018), we

assume that machines and all the j = 1, ...J types of labor are perfect substitutes to each other in

the production of each task x. The production function of qt(x) is described by

qt(x) = zMt (x)Mt(x) +
J∑
j=1

zjt (x)Hj
t (x), (9)

where zjt (x) is the productivity of labor type j in task x, and zMt (x) is the productivity of machines

in task x. Here, Hj
t (x) and Mt(x) are total effective units of labor j and machines used in task x.

For tractability, we assume that for all x ∈ [0,1] and periods t, the productivities of all labor

types j and machines, respectively, zjt (x) and zMt (x) are distributed i.i.d. Frechet. We assume

that across all labor types j and machines, the productivity distributions have a common shape

parameter ν > 1 and heterogeneous scale parameters Ajt > 0 and AMt > 0. In this way we can

use the results in Eaton and Kortum (2002) to further characterize optimal demands of factors of

production for the different tasks and the over production cost of the good as we discuss below.

3.1.2 Capital Owners

We assume a that both forms of physical capital, machines Mt and structures and other equipment

Kt are owned by a separate set of households. These households, which we call these households

‘capital owners,’ have a constant population with measure 1. Capital owners have standard pref-
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erences, given by

UK
t =

∞∑
s=0

βt
(
cKt
)1−γ

1− γ
, (10)

where, for simplicity, we have assumed that the discount factor β and the CRRA γ have the same

values as those of the workers, however, we need to assume γ > 0 for an interior solution on the

investment problem.

Capital owners rent out both forms of physical capital to firms, taking as given the rental price

of machines, rMt and of structures and other equipment, rKt . We follow Lucas and Prescott (1971)

and Eaton et al (2016) and assume that both forms of capital accumulate over time according to

Kt+1 =
(
1− δK

)
Kt + ξK

(
IKt
)$K (Kt)

1−$K , and (11)

Mt+1 =
(
1− δM

)
Mt + ξM

(
IMt
)$M (Mt)

1−$M . (12)

Here, δK and δM are both in [0, 1], and are the depreciation rates of the two forms of capital.

The parameters $K , $M are both in (0, 1], and give raise to curvature in investment, reducing

the return to investments IKt , IMt as they grow relative to the respective the pre-existing capital

stocks. Both investments IKt , IMt are in units of the final good. The strictly positive terms ξK

and ξM capture investment specific productivities.

Capital owners can freely borrow or lend at the gross (real) interest rate Rt. We denote by

Bt the net financial position of the representative capital owner in period t. In terms of financial

markets, below we consider two polar cases. First, we consider a small open economy in the

interest rate Rt in every period is taken exogenous from international capital markets. Second, we

consider a closed economy equilibrium in which Bt = 0 for all periods.

3.2 Competitive Equilibria

We assume all labor, capital and goods markets are perfectly competitive. Taking as given the

sequence
{
Pt, w

j
t , r

K
t , r

M
t , Rt

}∞
t=0

of goods prices, the unitary skill price for jobs of all types j =

1, ..., J and the rental rate of both forms of capital, firms and households maximize their current

profits and expected lifetime utilities, respectively. To formally define competitive equilibrium in

this environment, we first define the individual problems of firms and workers and outline the

market clearing conditions.

3.2.1 Workers’ Optimization and Labor Supply

The maximization problem of each of the workers is simply the time-varying extension of the

problem characterized in Section 2. For brevity, we consider here only the case of γ > 1, as the

other cases are similar. In any event, for every t, j and h, the expected normalized values
{
v`t
}J
`=1
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solve the problem recursion:

vjt =
(wjt )

1−γ

1− γ
− β Γ

(
1− 1− γ

α

)[ J∑
`=1

(−v`t+1)
α

1−γ (τj`λ`)
α

] 1−γ
α

, (13)

and the optimal occupation choices, i.e. transitions from any j to any ` are given by

µt (j, `) =

[
λ`τj`

(
−v`t+1

) 1
1−γ
]α

∑J
k=1

[
λkτjk

(
−vkt+1

) 1
1−γ
]α , (14)

where
{
v`t+1

}J
`=1

solves the problem for the subsequent period. Similarly, the transition matrix for

aggregate human capital from occupation j to occupation ` for the time-varying case is simply

Mt (j, `) = Γ

(
1− 1

α

)
τj` λ` [µt (j, `)]1−

1
α . (15)

The implied laws of motion for the population of workers and aggregate human capital across

occupations are, respectively

θt+1 = µTt θt, (16)

and

Ht+1 =MT
t Ht, (17)

for initially given θ0 and H0.

3.2.2 Firms’ Optimization and Labor Demand

In this setting, productivity differences and the linearity of qt(x) ensures that, except for a measure

zero, each of the tasks will be provided by only one type of labor j or by only machines, according

to their comparative advantage. To see this, let wjt be the unitary price of effective labor j and

rMt be the rental rate of a machine at time t. Because of perfect substitution, the minimum cost

of producing qt(x) units of task x is

Ct [q (x)] = q(x)×min

{
w1
t

z1
t (x)

,
w2
t

z2
t (x)

, . . . ,
wJt

zJt (xi)
,
rMt

zMt (x)

}
. (18)

Clearly, the ratios between factor prices and productivities determine whether one of the labor

types or machines will take care of a particular task.5 Optimizing firms will minimize the cost of

5Acemoglu and Restrepo (2018) considers two factor economies, i.e. machines and one type of labor. Here,
we consider a multidimensional setting where cutoffs and the assignments of workers and machines to tasks are
randomly determined for tractability.
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producing the aggregate bundle of tasks. The unitary cost, CQ
t , is the solution of the program:

CQ
t = min

qt(x)

∫ 1

0

C [qt (x)] dx s.t.

(∫ 1

0

[qt(x)]
η−1
η dx

) η
η−1

= 1. (19)

Finally, given the rental price rKt for physical capital Kt, and the unitary cost of tasks CQ
t , the

competitive price of final goods is simply given by

Pt =
[
ϕ−ϕ (1− ϕ)ϕ−1] (rKt )ϕ (CQ

t

)1−ϕ
. (20)

The next proposition characterizes the solution of the firms’ optimization problem:

Proposition 2 Assume zjt (x) and zMt (x) are distributed i.i.d. Frechet, all with shape parameter

ν > 1 and heterogenous scale parameters: Ajt > 0 for labor type j and AMt > 0 for machines.

Then, for all tasks x, the probability that labor from occupation j implement the tasks is

πjt =
(wjt )

−ν(Ajt)
ν

(rMt )−ν(AMt )ν +
∑J

`=1(w`t)
−ν(A`t)

ν
, (21)

while the probability that the task is implemented by machines is

πMt =
(rt)

−ν(AMt )ν

(rMt )−ν(AMt )ν +
∑J

`=1(w`t)
−ν(A`t)

ν
. (22)

The resulting unitary cost of producing the aggregate bundle of tasks, Qt, is

CQ
t = Γ

(
1 +

1− η
ν

) 1
1−η
[

(rMt )−ν(AMt )ν +
J∑
`=1

(w`t)
−ν(A`t)

ν

]−1/ν

. (23)

Moreover, the competitive price the final goods is given by

Pt = Φ0

(
rKt
)ϕ [

(rMt )−ν(AMt )ν +
J∑
`=1

(w`t)
−ν(A`t)

ν

]ϕ−1
ν

, (24)

where Φ0 ≡
Γ(1+ 1−η

ν )
1−ϕ
1−η

ϕϕ(1−ϕ)1−ϕ
> 0.

3.2.3 Capital Owners

Given an initial level of both forms of physical capital, K0 > 0, M0 > 0, the initial financial position

B0 and the sequence of good prices, capital rental rates, and interest rates,
{
Pt, r

K
t , r

M
t , Rt

}∞
t=0

,
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define the budget constraint, for any period t, as

rMt
Pt
Mt +

rKt
Pt
Kt +RtBt = cKt + IKt + IMt +Bt+1, (25)

where the laws of motion for Mt and Kt are given (12), (11), respectively.

Proposition 3 Under the conditions just stated, the program of consumption, investments and

capital stocks,
{
cKt , I

K
t , I

M
t , Kt+1,Mt+1, Bt+1

}∞
t=0

, that maximizes (10) is characterized by a stan-

dard transversality condition, and three Euler equations that can be written as:

Rt+1 = β−1

(
cKt+1

cKt

)γ
, (26)

rKt+1

Pt+1

=
Rt+1

(
IKt
Kt

)1−$K
−
[
(1−$M)

(
Kt+2

Kt+1

)
+
(
1− δK

)
$K

] (
IKt+1

Kt+1

)1−$K

$KξK
, (27)

rMt+1

Pt+1

=
Rt+1

(
IMt
Mt

)1−$M
−
[
(1−$M)

(
Mt+2

Mt+1

)
+
(
1− δM

)
$M

] (
IMt+1

Mt+1

)1−$M

$MξM
. (28)

Having characterized the individual optimality conditions of all agents in the economy, we now

define and characterize the competitive equilibria in this economy.

3.2.4 Competitive Equilibrium

The aggregate demand for each type of labor j, for structures and other equipment, and for

machines is as follows: The total payments to workers in occupation j is given by

wjt H
j
t = (1− ϕ) πjt Pt Yt. (29)

Similarly, the total payments for the rental of machines is

rMt Mt = (1− ϕ) πMt Pt Yt. (30)

Finally, the total payments for the rental of structures and other equipment is

rKt Kt = ϕPt Yt.

Having laid out the individual optimization problems and the market clearing conditions, we

define a competitive equilibrium as follows:

Definition 1 Given an initial population of workers and their human capital,
{
θj0, Hj

0

}J
j=1

, initial

stocks of machines and other physical capital {M0, K0}, and exogenous sequences
{
Ajt , A

m
t

}∞
t=0

an equilibrium is (i) a price system
{
wjt , Pt, r

K
t , r

M
t , Rt

}∞
t=0

, (ii) individual worker occupation
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decisions
{
vjt ,µt

}∞
t=0

, (iii) individual firm tasks-allocation choices
{
πjt , π

M
t

}∞
t=0

, (iv) aggregate

vectors of workers and human capital across occupations, stocks of machines and other physical

capital, {θt, Ht,Mt, Kt}∞t=0, and, (v) aggregate output, worker and human capital reallocations,

and flows of investments and of consumption of the owners of capital,
{
Yt, µt, Mt, I

K
t , I

M
t , c

K
t

}∞
t=0

such that: (a) Given
{
wjt , Pt, r

K
t , r

M
t

}∞
t=0

, the workers lifetime optimization
{
vjt ,µt

}∞
t=0

are given

by (13) and (14); the firms optimize production, i.e.
{
πjt , π

M
t , Pt

}∞
t=0

are given by (21), (22),

and (24); and capital owners invest optimally, i.e. according to (25), (27), and (28.) (b) factor

markets clear, i.e. (29), (30) hold for every t, and (c) the population of workers and human

capital allocation evolve according to (16) and (17 .)

We now characterize the prices that clear the market in every period given an exogenous level

for productivities
{
Ajt , A

M
t

}
, and some pre-determined levels of aggregate supplies Hj

t , Mt and Kt.

3.3 Static Market Clearing Conditions

We now consider the intratemporal equilibrium conditions, which, taking as given the period’s

stock of physical and human capital:

The following proposition characterizes the intratemporal equilibrium conditions:

Proposition 3 Aggregation, Intratemporal Equilibrium. Given pre-determined aggregate

variables,
{
Kt, Mt, H

j
t

}
, the intratemporal competitive equilibrium condition imply that the ag-

gregate output of tasks and final goods {Qt, Yt} and the equilibrium prices of
{
Kt, Mt, H

j
t

}
, are

given as follows: (a) the total output of bundles of tasks, Qt, is

Qt = Γ

(
1 +

1− η
ν

) 1
η−1

[(
AMt Mt

) ν
1+ν +

∑
`

(
A`tH

`
t

) ν
1+ν

] 1+ν
ν

; (31)

(b) the total output of goods,Yt, is

Yt = Γ

(
1 +

1− η
ν

) (1−ϕ)
η−1

(Kt)
ϕ

[(
AMt Mt

) ν
1+ν +

J∑
`=1

(
A`tH

`
t

) ν
1+ν

] (1+ν)(1−ϕ)
ν

. (32)

(c) The equilibrium real rental rate of capital ρKt ≡ rKt /Pt, is

ρKt = ϕΓ

(
1 +

1− η
ν

) 1−ϕ
η−1

[(
AMt

Mt

Kt

) ν
1+ν

+
J∑
`=1

(
A`t
H`
t

Kt

) ν
1+ν

] (1+ν)(1−ϕ)
ν

. (33)

(d) The equilibrium real rental rate of machines ρMt ≡ rMt /Pt, is

ρMt ≡ (1− ϕ) Γ

(
1 +

1− η
ν

) 1−ϕ
η−1
(
Kt

Mt

)ϕ [(
AMt
) ν

1+ν +
J∑
`=1

(
A`t
H`
t

Mt

) ν
1+ν

] 1−ϕ(1+ν)
ν (

AMt
) ν

1+ν . (34)
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(e) The real unitary wages for occupations j = 1, ..., J , ωjt ≡ wjt/Pt,are

ωjt = (1− ϕ) Γ

(
1 +

1− η
ν

) 1−ϕ
η−1
(
Kt

Hj
t

)ϕ [(
AMt

Mt

Hj
t

) ν
1+ν

+
J∑
`=1

(
A`t
H`
t

Hj
t

) ν
1+ν

] 1−ϕ(1+ν)
ν (

Ajt
) ν

1+ν .

(35)

These simple aggregation results, which are derived in the appendix, will be used later in our

characterization for the equilibrium dynamics of the model. We first examine stationary environ-

ments, balanced growth paths, and then examine the dynamic evoluation of the economy after a

shock that changes the relative productivity of machines and workers of different occupations.

3.3.1 Discussion

Some results are worth highlighting. In particular, the expressions in Proposition 2 together with

equilibrium conditions (29) and (30) characterize the labor share of the economy as a function of

the levels of technology A, wages and rental rate, a result we highlighted in the introduction. In

particular, the labor share of the economy is equal to 1−
[
(1− ϕ)πMt + ϕ

]
. While ϕ, the share of

income devoted to structures in our model, is constant, the share of equipment (1−ϕ)πMt depends

endogenously on technology, wages and the rental rate, and, for example, an increase in AMt will

lead to a decrease in the labor share. Similar to Acemoglu and Restrepo (2018), the labor share of

our economy depends on how efficient are machines in performing differnet tasks relative to labor.

In our case, we have several different types of labor, yet the analysis remains tractable.

3.4 Dynamics

We now consider the dynamic behavior of the economy. We first consider the time-invariant equi-

libria, when the economy follows a balanced-growth paths (BGP). We then consider the behavior

of the economy outside the BGP, that is, the dynamic equilibrium responses of the economy to

changes in, for example, the underlying productivities of both labor and machines.

3.4.1 Balanced Growth Paths (BGP)

Consider now an economy in which the productivity of factors remain constant over time Aj >

0, AM > 0. A time invariant equilibrium would accrue when all the prices of physical and

human capital remain constant. The intratemporal equilibrium conditions for real factor prices
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(
ρK , ρM , ωj

)
of all factors must remain constant and satisfy

ρK = ϕΓ

(
1 +

1− η
ν

) 1−ϕ
η−1

[(
AM

M

K

) ν
1+ν

+
J∑
`=1

(
A`
H

K

) ν
1+ν

] (1+ν)(1−ϕ)
ν

, (36)

ρM = (1− ϕ) Γ

(
1 +

1− η
ν

) 1−ϕ
η−1
(
K

M

)ϕ [(
AM
) ν

1+ν +
J∑
`=1

(
A`
H`

M

) ν
1+ν

] 1−ϕ(1+ν)
ν (

AM
) ν

1+ν , (37)

ωj = (1− ϕ) Γ

(
1 +

1− η
ν

) 1−ϕ
η−1
(
K

Hj

)ϕ [(
AM

M

Hj

) ν
1+ν

+
J∑
`=1

(
A`
H`

Hj

) ν
1+ν

] 1−ϕ(1+ν)
ν (

Aj
) ν

1+ν ,(38)

where K/M , M/H` and H`/Hj are the factor ratios that must remain constant over time.

As shown in the previous section, even with stationary prices, the aggregate human capital

in each of the occupations j may grow over time. Hence, instead of looking for steady states,

we now characterize the set of balanced-growth paths (BGP) where at constant rates, i.e. for all

j = 1, ..., J and t ≥ 0, we can write:
Hj
t+1

Hj
t

= GH ,

for some gross growth GH > 0. The equilibrium growth rate GH is determined as follows. First,

given real wages {ωj}Jj=1, workers solve a time invariant BE, which for γ > 1 has the form

vj =
(ωj)1−γ

1− γ
− β Γ

(
1− 1− γ

α

)[ J∑
`=1

(−v`)
α

1−γ (τj`λ`)
α

] 1−γ
α

,

exactly as as in Theorem 1. The formulae for µ andM are the same as in Section 2, and therefore,

the growth rate of all forms of human capital Hj will be govern by the Perron root of M, which,

as shown there, is unique, real and strictly positive. Second, given a growth rate GH , the Euler

equations (27) and (28) of capital owners require that the rental rates of both forms of physical

capital satisfy

ρK =

[
R−

(
1− δK

)
$K − (1−$K) (GH)

]
$KξK

[
GH −

(
1− δK

)
ξK

] 1−$K
$K

, (39)

ρM =

[
R−

(
1− δM

)
$M − (1−$M) (GH)

]
$MξM

[
GH −

(
1− δM

)
ξM

] 1−$M
$M

. (40)

where we have used that the investment-to-capital ratios consistent with GH are given by IK/K ={[
GH −

(
1− δK

)]
/ξK

} 1
$K and IM/M =

{[
GH −

(
1− δM

)]
/ξM

} 1
$M .

Here, we consider two possibilities: (a) Small Open Economies (SOE): where the interest rate

is exogenously given R = R∗. In this case, the consumption of the capital owners will also grow
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at a constant rate, cKt+1/c
K
t = (βR∗)

1
γ , but this growth rate needs not be equal to the growth rate

GH . (b) Closed Economies: In this case, the growth rate GH also determines the interest rate,

R = β−1 (GH)γ in equations (39) and (40.)

For concreteness, we use the following definition.

Definition 2 A BGP is a vector of factor prices
(
ρK , ρM , ωj

)
, an interest rate R, a growth rate

GH , a positive vector H ∈ RJ
++ of aggregate human capitals, a positive pair (K,M) of physical

capital and individual solutions for the workers problems {v, µ,M} such that: (a)
(
ρK , ρM , ωj

)
solve the intratemporal conditions (36), (37) and (38) for H,K,M ; (b) The growth rate GH is

the Perron root of M and H is the eigenvector associated to that root. (c) Given GH and H,

ρK , ρM satisfy the Euler equations (39) and (40.) (d) Given ωj, {v, µ} solves the individual

worker’s optimal occupation choice problem and M is the associated transition function for the

aggregate human capital. If (1) R = R∗ for some exogenous R∗ > 1, then the BGP is also BGP

equilibrium for a small open economy. If instead (2) R = β−1 (GH)γ, then the above BGP

is also a BGP equilibrium for a closed economy.

The simplest case to show existence is for a SOE under the standard investment model, i.e.

$K = $M = 1. In that case the rental rates of both capitals are uniquely pinned down by

ρK =
[
R∗ − 1 + δK

]
/ξK and ρM =

[
R∗ − 1 + δM

]
/ξM and independent of the growth rate GH .

In the appendix we show the following:

Theorem 2 Consider an economy that satisfies the parameter restrictions laid out above. More-

over, assume a constant, strictly positive vector of productivities
(
{Aj}Jj=1 , A

M
)

, and that the

conditions for Theorem 1 hold. Then: (a) There exist a unique time invariant {v, µ} that solve

the individual worker’s problem. (b) The transition matrix µ has a unique invariant distribution

of workers, i.e., θ∞ = µT θ∞, with θj∞ > 0 and
∑J

j=1 θ
j
∞ = 1. (c) There is exists a unique

equilibrium BGP.

The proof for this theorem is in the appendix. For existence and uniqueness it does not

matter whether the economy is closed or a small open economy, albeit that distinction can imply

important differences in the equilibrium allocations.

3.5 Transitions: Dynamic Hat Algebra

Having established the conditions for a BGP, in this section we examine the implied dynamics of

the model outside a BGP. To this end, in this section we extend the Dynamic Hat Algebra (DHA)

methods of Caliendo, Dvorkin, and Parro (2019) to a model with general CRRA preferences,

human capital accumulation and endogenous growth.

Proposition 3 Dynamic Hat Algebra. Given observed initial allocations of workers and hu-

man capital across occupations, observed initial matrix of occupational transition of workers and
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human capital, and observed factor payments, and values for the discount factor, the CRRA co-

efficient, the curvature parameters α and ν, we can solve for the sequential equilibrium of this

economy in changes towards the Balanced Growth Path. Moreover, given an unanticipated change

in machines or workers’ productivity, we can compute the sequential equilibrium of this economy

in changes towards the new Balanced Growth Path. In both these cases it is not necessary to know

the level of other constant parameters.

The proof of the proposition is in Appendix B.

Using dynamic-hat-algebra methods is particularly convenient for the computation of the model

for two reasons. First, the levels of a large set of parameter values, like τ , λ, A are not needed to

calibrate the model o to perform counterfactual analysis, only the changes in these parameters are

required. This implies that the calibration exercise is less demanding. Second, the level of many

of the model’s endogenous variables are not needed and the initial and terminal values for many

endogenous variables expressed in changes are easy to characterize.

4 A simple example

We now use a simple example to highlight the main forces at play in our model. We calibrate

our economy to three occupations. These occupations differ in the level of wages, the costs of

switching occupations in terms of human capital depreciation, and the initial allocation of workers

and total human capital.

5 The impact of technology on U.S. labor markets

In this section we conduct the main quantitative exercise. Our goal is to understand to what

extent some labor-saving technological advances with an asymmetric impact across occupations

can jointly explain the observed trends in U.S. labor markets in terms of labor polarization,

earnings inequality, and the labor share. We first start describing the data we use, our initial

conditions, the calibration strategy for some parameters and the moments we match.

5.1 Data and initial equilibrium

We assume our economy is initially in a balanced-growth path and we match the initial equilibrium

conditions of the model to those observed in the 1970s in the U.S. economy. For this we use different

pieces of data. Given our focus on occupations, occupational mobility and earnings dynamics, we

need a reliable source of microdata with this information and with a panel dimension. Kambourov

and Manovskii (2013) warns about the potential problems in using different available microdata

to study occupational mobility. We follow them and use the Panel Study of Income Dynamics
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(PSID) which from 1968 to 1980 has corrected some of the problems that typically arise in the

report of occupational status and occupational mobility.

The choice of how many occupations to include largely depends, on one hand, on the sample

size, and on the other, on computational constraint. We find the first to be more binding given the

relatively small sample of the PSID. We calibrate our model to an yearly frequency and to nine

occupations: (1) Management, business, and financial operations occupations; (2) Professional

and related occupations; (3) Service occupations; (4) Sales and related occupations; (5) Office and

administrative support occupations; (6) Construction and extraction occupations; (7) Installation,

maintenance, and repair occupations; (8) Production occupations; and (9) Transportation and

material moving occupations.6

While it is possible to compute the share of workers across occupations θ and the yearly

occupational mobility matrix µ directly using shares from the data, i.e. using a bin estimator, we

prefer to use an statistical method so our moments are less influenced by the small size of our

sample, particularly for some transitions. For this we estimate the transition matrix using the

Poisson Maximum-Likelihood methods proposed by Silva and Tenreyro (2006). As we assume that

the initial point of our economy is a balanced growth path, the vector θ can be obtained directly

from the estimated transition matrix.

The initial value of µ and θ are:

µ−1 =



0.911 0.014 0.012 0.008 0.008 0.005 0.020 0.012 0.010

0.025 0.879 0.015 0.010 0.011 0.006 0.026 0.016 0.012

0.030 0.022 0.852 0.012 0.013 0.007 0.031 0.019 0.015

0.040 0.030 0.025 0.791 0.018 0.009 0.043 0.025 0.020

0.039 0.029 0.024 0.016 0.800 0.009 0.041 0.024 0.019

0.061 0.046 0.037 0.025 0.027 0.671 0.065 0.038 0.030

0.018 0.014 0.011 0.008 0.008 0.004 0.916 0.012 0.009

0.029 0.022 0.018 0.012 0.013 0.007 0.030 0.856 0.014

0.035 0.026 0.021 0.015 0.015 0.008 0.037 0.022 0.821



θ0 =
[

0.2338 0.1355 0.0930 0.0466 0.0512 0.0172 0.2599 0.0987 0.0642
]T
.

We obtain the matrix M in a similar way but using information on earnings dynamics for

occupational switchers and stayers. Consistent with our model, we assume that the source of

earnings growth in the initial balanced growth path is the change in human capital and not

the change in unit wages as these are invariant in our setup.7 Moreover, as is well known, an

identification issue arises in the use of Roy models and a normalization is necessary. The problem

6We exclude from the analysis farming, fishing, and forestry occupations.
7We can easily accommodate a different assumption, allowing for additional sources of growth in our model.

25



is that with information only on earnings for an initial equilibrium, it is not possible to distinguish

the level of unit wages w and the total number of efficiency units of labor (or units of human

capital) h across occupations. Thus, we assume that the initial vector of unit wages is equal

to one and obtain the matrix M by the product of the matrix of average earnings changes for

occupational switchers and stayers by occupation and the matrix µ, as implied by our model.8

M−1 =



0.929 0.014 0.012 0.008 0.009 0.004 0.021 0.012 0.009

0.028 0.908 0.016 0.011 0.012 0.006 0.029 0.017 0.013

0.032 0.023 0.871 0.012 0.014 0.007 0.034 0.019 0.015

0.047 0.033 0.028 0.823 0.020 0.010 0.049 0.028 0.022

0.041 0.029 0.024 0.016 0.823 0.009 0.043 0.025 0.019

0.068 0.048 0.040 0.026 0.030 0.694 0.072 0.041 0.032

0.019 0.014 0.011 0.007 0.008 0.004 0.927 0.011 0.009

0.031 0.022 0.019 0.012 0.014 0.007 0.033 0.862 0.014

0.039 0.028 0.023 0.015 0.017 0.009 0.041 0.023 0.831


As expected from the theory, the elements inM−1 resemble hose in µ. Note however, that they

differ in important ways. For example, M−1 is not a stochastic matrix. In fact, the rows do not

add up to the same number. Also, note that the ratio between M and µ indicates the expected

(average) evolution of human capital for the occupational switchers conditional on switching. This

ratio has elements between 0.96 and 1.16.

As we argued the largest eigenvalue of M−1 represents the long-run gross growth rate of this

economy, which in this case is 1.023. In other words, our initial balanced growth path has a growth

rate of 2.3% per year. Moreover, the normalized vector of aggregate human capital by occupation,

H, is,

H0 =
[

0.240 0.144 0.095 0.048 0.055 0.018 0.249 0.091 0.060
]T
.

As we said before, we assume that the economy is initially in a balanced growth path. We can

test this assumption informally by looking at how different the actual data for θ0 and H0 is from

the ones implied by the respective transition matrices. Figure 1 compares values for θ0 and H0

in the data and the ones implied by the balanced-growth path assumption. We can see that the

allocations in the data and the ones implied by the mobility matrices are very highly correlated

and are of roughly the same magnitude, laying very close to the 45 degree line.

We calibrate the risk aversion parameter γ to 2, an usual value in the macroeconomics lit-

erature. Parameter α directly affects the dynamics of earnings and, other things equal, has a

direct incidence on the amount of earnings inequality. We assume a value of 25 which implies that

permanent earnings shocks at the individual level do not have a large variance, consistent with

the empirical literature on earnings dynamics, but over time they accumulate and and are able to

8Clearly, this is just a normalization, and thus, inconsequential for the results. Alternatively we could assume
that w differs by occupation, and the matrix M and the vector of human capital would change accordingly.
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Figure 1: Data vs BGP implied allocations

generate an important amount of inequality in the cross-section. We take calibrate the discount

rate β to 0.95.

We use information on National Income and Product Accounts and input output tables to

calibrate the share of income going to structures and going to equipment ϕ and (1−ϕ)πM0 . Given

our previous assumptions, there is a direct link between the initial shares of income by occupations

(1 − ϕ)πj0 and the aggregate human capital by occupation Hj
0 . We do not have a clear strategy

to identify the value for ν, which governs the degree dispersion in productivity of different types

of labor and machines in the production of tasks. We calibrate ν to 4 and later analyze how our

results change as we vary this value.

5.2 The effects of an asymmetric labor-saving technology shock

We calibrate the technology as a change in AMt . We first observe that the equilibrium conditions in

our model, in particular the Euler equation for the investment in equipment, (28), imply an inverse

relationship between the rental rate rMt and investment-specific productivity ξMt . Thus, we follow

the literature on skill-biased technical change and use data on the price of investment in equipment

relative to the price of consumption to calibrate the evolution of labor-saving technology. However,

in stead of using and exogenous change in ξMt , we note that the ξMt and rMt are connected in the

model, and the way rMt and AMt are connected in (22), allows us to map the technological change

to AMt .
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We note, however, that for technology to have an asymmetric effect in the labor market,

the ratio of Ajt and AMt must vary in a different way across the different occupations. We use

information of the share of earnings by occupations to discipline this ratio using the calibrated

series of AMt directly from the data (changes in the inverse of the relative price of investment).
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Figure 2: Evolution of employment shares by broad occupation groups

Changes in equilibrium wages and lifetime utility due to the shock, induce a reallocation

of workers across occupations. Figure shows the changes in the employment shares by broad

occupation groups given the calibrated labor-saving technology shock. The largest impact is in

routine-manual occupations, composed of construction, installation and repair, transportation

and production, with a sharp reduction in employment. While employment increases in all other

occupations, the increase in by far more pronounced in non-routine-cognitive occupations, which

include management, professional and technical occupations.

Moreover, and as we emphasized in the Introduction and Section 2, the growth rate of the

economy depends on the reallocation. Once the economy stabilized in its new balanced growth

path, the economy grows at a gross rate of 1.024. That is, one decimal point higher growth than

initially.
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6 Conclusion

We develop a dynamic Roy model of occupational choice with human capital accumulation and

use it to explore the general equilibrium effects of new technologies on the labor market. In our

model, infinitely-lived workers can switch occupations in any period to maximize their lifetime

utility. In our setting, a worker’s human capital is driven by his labor market choices, given

idiosyncratic occupation-specific productivity shocks and the costs of switching occupations. We

first characterize the equilibrium assignment of workers to jobs. A key result is that the resulting

evolution of aggregate human capital across occupations ultimately determines the long-run rate

of growth rate of the economy. We then use the model to quantitatively study how worker’s

individual occupation choices change with the introduction of new technologies, and in turn how

this choices shape the equilibrium allocation of workers to different jobs, the dynamics of aggregate

human capital, the behavior of earnings inequality, the evolution of the labor share, and the welfare

of the different workers in the economy.

The paper has a number of methodological contributions. First, we fully characterize the so-

lution of the recursive problem of a worker under standard CRRA preferences when the worker

is subject to a large number of labor market opportunities shocks in every period affecting her

comparative advantage in different occupations. Thus, we bridge recent quantitative work that

uses static assignment Roy models with extreme-value shocks with the standard recursive mod-

els for households in macroeconomics. In this way, our model generates transition probabilities

across occupations over time. Second, we fully characterize the asymptotic behavior of aggregate

economies implied by the individual dynamic occupation choices of workers. For any given vector

of skill prices, we show that the economy converges to a unique invariant distribution of workers.

Although the Roy model has been studied and used in great length, we uncover important new

features which are present only in a dynamic context. We show that, generically, the reallocation

of workers to occupations combined with the accumulation of occupational human capital leads

to sustained growth over time for the economy. The growth rate in our model is endogenously

determined by the equilibrium occupational choices, and thus, changes in economic conditions

that alter worker’s choices affect the long-run growth rate of the economy. Third, we embedded

the workers’ problem in a fairly rich general equilibrium environment where different types of

workers are allocated to different tasks in production. We derive a very transparent and tractable

aggregation that arises from the assignment of workers to tasks. Then, we show the existence of

a competitive-equilibrium balanced-growth path, and for a simple version of our model we can

also characterize uniqueness. Fourth, by incorporating two forms of physical capital, we provide

a quantitative framework to study the impact of automation and other labor-saving technologi-

cal improvements on the earnings of different occupations. Our model of production and tasks

generates an intuitive expression that directly links the labor share of the economy with wages,

rental rates and the productivity of different types of labor and capital, allowing us to study the

effects of technology on the labor share of the economy. Fifth, we extend recent dynamic-hat-
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algebra methods and show they can be used with more general preferences (CRRA) and with

human capital accumulation. As with other hat-algebra methods, the advantage is a substantially

reduced set of calibrated parameters needed for the quantitative application of the model. Sixth,

we discuss a variety of relevant extensions of our baseline model, ranging from workers’ age and

ex-ante heterogeneity, endogenous on-the-job training and occupation-specific automation.

Using our model we make a number of substantial contributions. Mapping our model to the

moments observed in the 1970s for the U.S. economy, we account for the changes in employment

across occupations and the increase in earnings inequality that arise from labor-saving technolog-

ical advances. An important change observed in U.S. labor markets in the past few decades is

the polarization of skills in the labor market. That is, the decline of employment in middle-skill

occupations, like manufacturing and production occupations, and the growth of employment in

both high and low-skill occupations, like managers and professional occupations on one end, and

assisting or caring for others on the other. Using our model we show how some labor-saving

technical improvements can jointly explain the increase in polarization, earnings inequality and

occupational mobility in U.S. labor markets.

In addition, our dynamic model highlights the long-lasting impact of permanent, but once-

and-for-all technological changes. Indeed, in our dynamic setting, once-and-for-all changes in

automation or other technological changes can lead to sustained growth effects. Our quantitative

exercise highlight how this growth effect changes the conclusion on earnings inequality and welfare.

We emphasize that the welfare and inequality implications for technological changes can be vastly

richer than those obtained in other settings as they originate not only from changes in skills prices

in each period but also on changes in the equilibrium growth rate of earnings. Thus, on the one

hand, the positive impact on some workers is not only due to higher level of earnings but also from

a faster growth. On the other hand, some workers can be worse-off due to lower levels of earnings

and a higher rate at which they change occupations. These aspects are fully incorporated in our

exercises.
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