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Abstract

We empirically measure the inefficiency of uncoordinated externality markets in the

context of CO2 regulation of electricity generation. Using data from a large regional

U.S. wholesale electricity market that spans multiple states, we estimate a dynamic

structural model of production and investment, and simulate the model under two

scenarios to measure the inefficiency. In the first scenario, plants face CO2 prices that

differ across states. In the second scenario, plants face a single CO2 price. Holding

investment in new plant capacity fixed, generation costs in the first scenario can be as

high as $7.8 billion, or about 50% of the cost of complying with the regulation, relative

to the second scenario. However, we find that the inefficiency with uncoordinated CO2

markets is eliminated once we allow for optimal investment.
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1 Introduction

Product markets typically fail in the presence of externalities. Since the work of Coase,

economists have known that a solution to the externality problem is to establish property

rights and let agents negotiate. In the presence of multiple heterogenous agents, market-

based mechanisms (henceforth, “markets for the externality”) can provide cost-effective so-

lutions. These mechanisms put a price on the externality and efficiently coordinate behavior.

In the case of pollution, several market-based mechanisms have been developed by pol-

icy makers to correct the negative externality, including markets for emissions permits. A

market for permits is an efficient way to correct the negative externality by equating het-

erogeneous marginal abatement costs. To maximize the gains from trade, a single market

for the externality is generally ideal.1 In practice, organizing a single externality market

requires coordination of regulations across multiple jurisdictions, which is generally difficult

due to differences in preferences and priorities of these jurisdictions. At best, jurisdictions

that want to adopt regulation run separate and often uncoordinated externality markets. For

example, there are 27 jurisdictions currently implementing or are scheduled to implement a

form of carbon emissions trading system as of 2019. Moreover, most of these markets are

only at the provincial or city level and are not linked to each other.2 In the U.S., attempts to

federally address greenhouse gas emissions have largely failed, and unless new legislation is

passed, further attempts on regulation will most likely have to be implemented at the state

level.3

The goal of the paper is to empirically measure outcomes under uncoordinated externality

markets and compare them with outcomes under a single market. Our key insight is that

uncoordinated externality markets increase firms’ incentives to invest in new capacity, which

mitigates the inefficiencies from lack of coordination. Given that uncoordinated regulation

entails spatial dispersion in externality prices, there are locations where it is cheaper to

1If the marginal damage from the externality differs across jurisdictions such as in the case of NOx
emissions (Muller and Mendelsohn (2009); Fowlie and Muller (2017)), then having separate but coordinated
externality markets would be ideal from a welfare standpoint. However, the benefit of having differentiated
NOx prices seem to be second order relative to having correct expectations on what abatement costs will be
in the future (Fowlie and Muller (2017); Holland and Yates (2015)). In any case, we look at CO2 emisions
which is uniformly mixed unlike NOx. For uniformly mixed pollutants, the damage depends on the total
emissions entering the atmosphere and not the location of the source.

2Among these jurisdictions, one is supranational (European Union), four are at the country level (China,
Colombia, New Zealand, Switzerland), fifteen are provinces and states, and seven are cities. See https:

//icapcarbonaction.com/ets-map for an updated interactive map of emissions trading systems in force,
scheduled or under consideration at the national and subnational levels.

3Absent new legislation, efforts to regulate CO2 will fall under the purview of the Clean Air Act (Goulder
and Stavins, 2010). The Act authorizes the Environmental Protection Agency (EPA) to set state-level targets
and solicit state implementation plans to achieve these targets. While the EPA can encourage coordination
among states, it does not have the power to force them to do so.

2

https://icapcarbonaction.com/ets-map
https://icapcarbonaction.com/ets-map


emit. All else equal, profit-maximizing firms will move production (and emissions) towards

these locations until there is no dispersion in prices, or once capacity constraints in low-

priced locations impede reallocation. Binding capacity constraints induces an additional

benefit to investing in new capacity since new capacity relaxes these constraints and allow

further reallocation. This additional benefit to investing is thus driven by the desire to

reallocate production that arises because of dispersion in prices, hence is only present under

uncoordinated externality markets.

We take CO2 emissions regulation of electricity generating plants as our empirical setting.

The electricity sector is a major source of CO2 emissions, just behind transportation, and

efforts to control emissions often directly target the industry. We focus on the set of plants

participating in the Pennsylvania-New Jersey-Maryland (PJM) wholesale electricity market,

which is the world’s largest wholesale electricity market covering (all or parts of) thirteen

states. PJM is an ideal setting to study inefficiencies with uncoordinated CO2 markets

since there is considerable heterogeneity in the plants’ fuel mix and emissions, resulting

in substantial differences in the stringency of CO2 regulation across states. Due to the

heterogeneity in stringency, there are gains from trade from having a regional CO2 market.

Using rich plant-level data, we set-up and estimate a dynamic structural model of multi-

plant production and investment preserving the heterogeneity within and across firms. We

simulate the model under two scenarios: (1) uncoordinated state-by-state CO2 markets, and

(2) a single PJM-wide regional CO2 market. In the first scenario, each state is required to

keep CO2 emissions below a specified target, while in the second scenario, states comply as

a region and hence are only required to keep the sum of CO2 emissions across states to be

below the sum of the individual state targets. Thus, in the first scenario plants pay a CO2

price that depends on the location of the plant. In contrast, plants pay a single CO2 price

regardless of their location in the second scenario.4

Given the heterogeneity in plant characteristics and regulatory stringency across states,

state-by-state CO2 prices will likely differ. In this case, marginal abatement costs of plants

will not be equal, and hence, creating inefficiency. Insights from the trade literature (e.g.

Samuelson (1948) and Mundell (1957)), however, tell us that if we think about emissions as

a factor of production, then inefficiencies arising from the lack of a single CO2 market may

not be that large if firms face an integrated product (electricity in our case) market and can

reallocate production (hence emissions) across jurisdictions. In our setting, while firms own

and operate plants located in different states and are subject to different CO2 prices, these

4We take the CO2 emissions targets from the Obama-era Clean Power Plan (CPP). Although the CPP
has already been repealed by the Trump administration, it serves as a useful example of what CO2 emissions
regulations based on the Clean Air Act would look like.
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plants supply electricity to an integrated product market, i.e. the PJM wholesale market.

All else equal, profit-maximizing firms move production from plants in states with high CO2

prices to states with low CO2 prices. In fact, the larger the difference in CO2 prices, the

stronger the incentive to reallocate production.

Absent any frictions to output reallocation and CO2 price adjustment, a firm will con-

tinue to reallocate output until CO2 prices converge, as if there was a regional CO2 market.

In practice, there are important frictions that impede reallocation and sustain the ineffi-

ciency of separate externality markets. One important friction that we focus on are capacity

constraints.

To understand the importance of capacity constraints, we first compute the difference

in electricity generation cost between the state-by-state and regional scenarios holding ca-

pacities fixed. We refer to the difference in cost in this case as static inefficiency. Next, we

investigate whether optimal investment differs between the two scenarios. The comparison

in cost in this case will take into account potential differences in the incentives to invest, and

therefore different levels of capacity. The difference in cost between the state-by-state and

regional scenarios when we take optimal investment into account is a measure of dynamic

inefficiency. Figure 1 illustrates the difference between static and dynamic inefficiency.5

Our results show that static inefficiency can be as much as $7.8 billion, which is about 50%

of the cost of complying with the CO2 regulation. Moreover, once we reach a sufficiently

large capacity, static inefficiency disappears. For sufficiently large capacity, the capacity

constraint no longer binds and thus we are back to the case of perfect reallocation. In this

case, outcomes with a regional and state-by-state CO2 markets will be the same.

Once we take optimal investment into account, we find that capacity is larger with state-

by-state CO2 markets. Since investment in new capacity facilitates reallocation of production

when capacity constraints bind, there is an additional benefit to investing in new capacity

which is increasing in the dispersion of CO2 prices. This additional incentive to invest is

not present in the regional scenario since CO2 prices across states are the same. In our

simulations, the additional investment in the state-by-state scenario is sufficiently large such

that generating cost actually falls below the regional scenario, and thus there is no dynamic

5In the figure, the horizontal axis is the amount of capacity in the low CO2 price state. The black curve
represents generation cost with separate CO2 markets, while the grey curve corresponds to the single CO2

market scenario. At some level of capacity K, generation cost with separate markets is Csep(K) while the
corresponding cost with single market is Csin(K). Thus static inefficiency at K is equal to Csep(K)−Csin(K).
Dynamic inefficiency instead takes into account potentially different levels of capacity between the state-by-
state and regional scenarios. In panel (b) of Figure 1, CsepK

∗∗ is the cost corresponding to the state-by-
state scenario given optimal capacity K∗∗, while Csin(K∗) is the cost for the regional scenario given optimal
capacity K∗. The dynamic inefficiency is the difference Csep(K∗∗)−Csin(K∗), which is lower than the static
inefficiency holding K fixed at K∗, i.e. Csep(K∗∗)− Csin(K∗) < Csep(K∗)− Csin(K∗).
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inefficiency with state-by-state. Moreover, we find that decline in generation cost driven by

larger investment with state-by-state CO2 markets is larger in magnitude than than the cost

from the higher level of investment, hence total cost is actually lower under the state-by-

state scenario. Finally, if capacity is below the socially optimal level such as when firms

have market power (e.g. McRae and Wolak (2019)), our results suggest that welfare under

state-by-state CO2 markets can even dominate welfare under a regional market.

Related Literature

Our paper is related to the literature on incomplete regulation. Incomplete regulation oc-

curs when there is no uniform adoption of regulations across jurisdictions, hence exempting a

subset of polluting sources from regulation. As such, separate and uncoordinated externality

markets can be a direct consequence of incomplete regulation. The literature has focused on

the important problem of emissions leakage whereby firms relocate production (and emis-

sions) to unregulated jurisdictions, which reduces the efficacy of the regulation (see, e.g.,

Fowlie (2009) and Fowlie et al. (2016)). A similar form of leakage occurs when firms face

overlapping state and federal regulations in only a subset of states and state regulations are

stricter than federal ones (Goulder et al. (2012); Goulder and Stavins (2010)).6

We contribute to the literature by illustrating the importance of thinking about adjust-

ments that may not happen in the short-run and showing how ignoring these may overstate

problems with incomplete regulation.7 Although the short-run static inefficiency with unco-

ordinated externality markets can be substantial, what drives the inefficiency, i.e. different

state-by-state CO2 prices, actually encourages greater investment. Greater investment in

turn mitigates the inefficiency with uncoordinated markets. In fact, if there are distortions

that lead to under-investment (e.g. strategic capacity withholding and lax environmental

regulations), long-run welfare may end up being higher.

The paper is also germane to the literature that investigates the interaction between

6Bushnell et al. (2017b) study differences in regulatory environment across states resulting from lack
of coordination and strategic policy choice. They study a state-level policy choice in the context of the
CPP: whether to implement a mass- or a rate-based target. They show that states can strategically choose
between these two policies in a way that leads to lower welfare and increased emissions (due to leakage),
hence highlighting the importance of coordinating regulation. In contrast, we take a step back from the
specific design of the policy, and focus on the question of single versus separate markets.

7There are actually two adjustments in the paper: firms adjust their capacity to facilitate further reallo-
cation when capacity constraints bind, and, CO2 prices across markets adjust as production (and emissions)
is moved from one location to another. By assuming implementation of CO2 regulations via markets, we
are, in a way, assuming that states without any regulation—as in the typical case of incomplete regulation—
will eventually impose one as emissions are dumped into the state. One example of this type of regulatory
adjustment is how California’s more stringent fuel efficiency standards eventually led to adoption of similar
standards by other states.

5



environmental regulation and other forms of regulation and market structure.8 Our work is

most related to Ryan (2012) and Fowlie et al. (2016) which build a Markov Perfect Nash

Equilibrium (MPNE) framework and use a two-step estimation method based on Bajari et al.

(2007) to study the effects of environmental regulation in an oligopoly setting.

In terms of estimation, we closely follow the methods used in Ryan (2012) and Fowlie

et al. (2016), and adapt these to fit the electricity industry and our institutional setting.

One important difference is that we only need to estimate investment costs since production

costs can be computed directly from data on plant-level heat rates, emission rates for var-

ious pollutants, and other operations-and-maintenance related costs (e.g., Mansur (2007),

Bushnell et al. (2008) and Gowrisankaran et al. (2016)). Finally, the approach we use to

solve the counterfactual simulations significantly differs from Ryan (2012) and Fowlie et al.

(2016) in two ways. First, the computation of the stage game equilibrium is more involved

since we need to find the set of prices that simultaneous clear more than ten markets (in-

dividual states’ CO2 markets and the main electricity market). Second, given the stage

game equilibrium payoffs for each point in the state space, we solve for the MPNE by com-

bining an upwind Gauss-Seidel approach (Judd, 1998) with a statewise Nash Equilibrium

approach.9 This approach is less prone to convergence issues since finding the MPNE reduces

to sequentially solving the Nash Equilibria of normal form games along the state space.

Finally, our paper contributes to the empirical literature on electricity markets. Most of

the literature has focused on firms exercising market power through strategic bidding and

withholding of existing capacity—see Green and Newbery (1992) and Wolfram (1998) for

early contributions, and more recently, Borenstein et al. (2002), Hortacsu and Puller (2008),

Mansur (2007), and Bushnell et al. (2008). In contrast to these papers, we model strategic

investment in new capacity, which has only received limited attention (e.g. Bushnell and

Ishii (2007)).

8Recent papers in this literature include Fowlie (2010) on the interaction of the NOx Budget Program
with rate-of-return regulation, Cicala (2015) and Abito (2019a) on the interaction between the Acid Rain
Program and agency problems, Davis and Muehlegger (2010) on U.S. natural gas distribution, Hausman
and Muehlenbachs (2016) on methane leaks, Ryan (2012) on industry concentration and the Clean Air Act
Ammendments, and finally Fowlie et al. (2016) on the interaction of market power, industry dynamics and
market-based mechanisms to limit CO2 emissions.

9Chen et al. (2009) compute the MPNE in their game with network effects by solving a two-stage subgame
of compatibility and pricing at each given state. Doraszelski and Escobar (2010) characterize an MPNE as
the NE of normal form games (one for each state) to apply an analogous purification argument as Harsanyi
(1973). Abito et al. (2019) use a similar trick to construct bounds in the context of supergames that allow
for states.
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Structure of the Paper

The remainder of the paper is organized as follows. Section 2 gives some background on our

empirical setting. We present our empirical model in Section 3, followed by a discussion of

estimation and empirical results in Section 4. Section 5 contains our counterfactual analysis

and we finally conclude in Section 6. An Online Appendix contains the details on data

construction, estimation procedure, and computational approach for the counterfactuals.

2 Background

2.1 PJM Electricity Market

The Pennsylvania-New Jersey-Maryland (PJM) Interconnection operates the world’s largest

wholesale electricity market as the regional transmission organization for all or parts of

Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina,

Ohio, Pennsylvania, Tennessee, Virginia, West Virginia and the District of Columbia (Fig-

ure 2). PJM coordinates the buying, selling and delivery of wholesale electricity through

its Energy Market which began operations in 1997. As the market operator, PJM balances

the needs of buyers, sellers and other market participants and monitors market activities to

ensure “open, fair and equitable access.”10 To give the reader an idea of the transactions in

PJM, between 2003 and 2012, the value of transactions in PJM’s real-time energy market

grew from approximately $13 billion to $26 billion (Table A5). Total billings in 2012 were

close to $29 billion.

Table 1 shows installed capacity by source using data from the PJM State-of-the-Market

(SOM) reports for 2005-2012.11 Total capacity increased from 163,500 MW in 2005 to

182,000 in 2012, with a compound annual growth rate (CAGR) of 1.8%. During the same

time, coal-fired capacity increased from 67,000 MW to 76,000 MW, while gas-fired capacity

increased from 44,000 to 52,000 with implied CAGRs of 1.93% and 2.47%, respectively.

Averaged across years, the two fuels combined account for 70% of the total capacity, with

coal accounting for 40% and gas accounting for the remaining 30%. Nuclear’s share of total

capacity is 18.5% while that for oil is 6.5%. The remaining sources—hydro, wind, and solid

waste— account for the remaining 5% of total capacity.

Ownership of coal and natural gas capacity in each participating state are highly concen-

trated. For example, in 2012, all coal capacity in Kentucky is owned by a single company

10See http://www.pjm.com/~/media/about-pjm/newsroom/fact-sheets/pjms-markets-fact-sheet.

ashx. As of December 31, 2012, PJM had installed generating capacity of about 182,000 megawatts (MW)
and a peak load close to 154,000 MW. See Table 1-1 in Volume 1 of the State-of-the-Market report for 2013.

11See http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2016.shtml.
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(AEP), while all natural gas capacity in North Carolina is owned by Dominion. The HHI

for capacity in states that have at least two companies ranges from 2,209 (Pennsylvania) to

9,876 (Indiana) for coal, and from 1,786 (Pennsylvania) to 9,910 (Kentucky) for natural gas.

2.2 CO2 Emissions Regulation

The closest that the U.S. has come to regulating CO2 emissions was through the Clean

Power Plan (CPP) formulated during the Obama Administration to limit CO2 emissions

from fossil-fired power plants. Fossil fuel-fired plants, which are mostly coal- and gas-fired,

are one of the largest single source of CO2 emissions, accounting for about a third of U.S.

total greenhouse gas emissions. The CPP called for a 32% reduction in CO2 emissions from

the power sector by 2030 relative to its 2005 levels. Although the Trump Administration

proposed to repeal (October 7, 2018) and replace (August 21, 2018) the Obama-era rules,12

the CPP still provides a useful example of what CO2 emissions regulation can look like since

future regulations will still be based on the same legal framework, the Clean Air Act (CAA).

Using the authority given by the CAA, the U.S. Environmental Protection Agency (EPA)

finalized two sets of rules aimed to address CO2 emissions from fossil-fired power plants

(EPA (2015)). In this paper, we collectively refer to the two sets of rules as the CPP, though

technically the CPP refers to the set of emission targets applied to existing plants (Section

111(d) of the Clean Air Act) while the rules that are applicable to new sources are part of

the “Carbon Pollution Standard for New Plants” (Section 111(b)).

Section 111(b) gives the EPA authority to set standards or emissions limitations on

new, modified, or reconstructed plants.13 Even though the EPA cannot require a specific

technology that firms should adopt under Section 111(b), the emission limits set by the EPA

in the case of the CPP essentially precluded technologies that would not meet the limit. For

example, the final CPP rule specified a limit of 1,000 lbs of CO2 per MWh for gas-fired plants,

which was feasible only for the latest combined-cycle technology. For coal-fired plants, the

limit was 1,400 lbs of CO2 per MWh, which was achievable only with carbon capture and

storage technology, a technology that is costly and not widely available.

Under Section 111(d), the CPP established interim and final rate-based (lbs./MWh) and

mass-based (short tons) state goals regarding CO2 emissions. The interim goals were for

the period 2022–2029, while the final goals were for 2030. The EPA gave the states the

12The CPP has since been replaced by the Affordable Clean Energy rule, which largely leaves states to
decide whether and how to regulate CO2 emissions.

13Units that are built, modified or reconstructed after the prevailing Section 111(d) targets were set are,
by statute, classified as “new” as long as the same targets are in place. For example, in the original CPP,
the targets were expected to remain at least until 2030. Only when targets are revised will these sources be
reclassified as existing.
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flexibility to develop and implement plans to ensure that power plants in their state—either

individually, together, or in combination with other measures—were capable to achieve the

interim and final goals.

To set these targets, the EPA determined the best system of emission reductions (BSER)

that had been demonstrated for a particular pollutant and particular group of sources by

examining technologies and measures previously used. The BSER consisted of three building

blocks: (i) reducing the carbon intensity of electricity generation by improving the heat rate

of existing coal-fired power plants, (ii) substituting existing gas-fired generation for coal-

fired generation, and (iii) substituting generation from new renewable sources for existing

coal-fired generation.14

Table 2 shows the CPP mass-based targets for the eleven PJM states used in our empirical

analysis, noting that the targets have been adjusted to account for the fact that only a

part of the plants located in Illinois, Indiana, Kentucky, and North Carolina fall under the

PJM footprint. The first observation regarding the information in this table is the gradual

reduction in total emissions (short tons) for all states between the first and final years of CPP.

The second observation is the notable heterogeneity in targets across states. For example, in

the first year of CPP, the target for Maryland is 18.2 million short tons, while its counterparts

for Ohio and Pennsylvania are 92.1 and 110.2, respectively. This difference in CO2 emissions

reflects the difference in generation from coal, gas, and oil, for the three states in 2012. This

“baseline” generation is a key component in the calculation of the targets (Table 3).

The stringency of the target varies substantially across states and this variation is the

source of gains from trade from coordinating separate CO2 markets. Taking 2012 CO2

emissions as a base, the targets require a reduction of 50% or more in Kentucky (52%),

Illinois (52%), Indiana (50%), West Virginia (50%) and Maryland (50%). On the other

hand, the targets require a reduction smaller than 50% in Ohio (49%), Pennsylvania (46%),

North Carolina (39%), Virginia (30%) and New Jersey (24%). Given the variation in the

stringency of the targets, it is interesting to note the distribution of the coal- and gas-fired

capacity for some of the dominant firms in the region as this would influence how a firm

would reallocate its generation. For example, the fraction of the combined (coal- plus gas-

fired capacity) in a state that requires less than 50% CO2 emissions reduction is as follows:

First Energy (52%), AEP (39%), Dominion (75%), and Duke (89%).

14EPA applied the building blocks to all coal and natural gas units in the three major electricity intercon-
nections in the country (Eastern, Western, and ERCOT (Texas)) to produce regional emission rates. From
the resulting regional rates for coal and natural gas units, EPA chose the most readily achievable rate for
each category to arrive at the CO2 emission performance rates for the country that represent the BSER.
The same CO2 emission performance rates were then applied to all affected sources in each state to arrive
at individual statewide rate-based and mass-based goals. Each state had a different goal based upon its own
particular mix of different sources.

9



We end this section with a remark. The separate rules for existing and new plants provide

two useful modeling shortcuts. First, because only emissions from existing plants are counted

against the state-level CO2 targets, the location of a new plant is irrelevant with respect to

the CO2 price. Location choice for new capacity is an interesting but extremely complicated

problem, especially in our case, where multiple CO2 markets and the electricity market all

have to clear simultaneously in each period. Second, since firms must essentially invest in

plants that have the best available technology (BAT), new plants will have the property of

being infra-marginal which, as we show in the section, helps us reduce the size of the state

space.

3 Model

We now present our model of the PJM wholesale electricity market. Figure 3 provides an

overview of the timing of the model. We model the market interaction as a dynamic stochastic

game where firms first decide on whether to invest in new plants, and then given their current

portfolio of plants, they compete to supply electricity. Each firm owns a portfolio of plants

that can differ in fuel-type, capacity, efficiency, emissions rate, and location. Investment and

supply decisions determine the portfolio of plants and the share of electricity output for each

fuel type, which, in turn, determine the level and location of CO2 emissions.

We distinguish between two groups of firms in our model. There is a group of N strategic

firms, where N is much smaller than the total number of firms. We assume that only

strategic firms can invest in new plants. We treat the rest of the firms as a fringe. The

fringe is exogenously endowed with a portfolio of plants that remains fixed throughout the

analysis.

In what follows, we first describe how we model electricity demand and firms’ supply

decisions conditional on the portfolio of plants. We then discuss how plant portfolios endoge-

nously evolve through a firm’s choice of investment. We close the section with a discussion

of equilibrium.

3.1 Electricity Demand

To model demand, we adapt the approach in Bushnell et al. (2008) (henceforth, BMS) using

monthly data and a more parsimonious specification. The need for parsimony stems from the

fact that we only have 120 monthly observations for 2003–2012, whereas BMS uses roughly

3,000 hourly observations. We use fringe supply to refer to the supply subtracted from the

vertical inelastic market demand to obtain the residual demand for the strategic firms, which
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we assume to be the firms listed in Table 4. This fringe supply consists of the following: (i)

net imports, (ii) supply of fringe firms, and (iii) supply of strategic firms from sources other

than coal and gas. We then estimate the following fringe supply function:

qfringeτ =
12∑
m=1

αmdmτ +
10∑
y=2

αydyτ + βln(pwτ ) + µ1CDDτ + µ2CDD
2
τ

+ µ3HDDτ + µ4HDD
2
τ + ετ , (1)

where dmτ and dyτ are the fixed effects for month m and year y, respectively. Additionally, pwτ

is the average monthly real-time system-wide locational marginal price in the PJM wholesale

electricity market. We proxy for electricity prices in the states surrounding PJM using

average cooling (CDDτ ) and heating (HDDτ ) degree days and their squares accounting for

the fact that the PJM footprint expanded during the period in our sample. Finally, ετ is the

idiosyncratic shock. We introduce some compact notation writing (1) as follows:

q̂fringeτ = λ̂τ + β̂ln(pwτ ) (2)

λ̂τ ≡
12∑
m=1

α̂mdmτ +
10∑
y=2

α̂ydyτ + µ̂1CDDτ + µ̂2CDD
2
τ + µ̂3HDDτ + µ̂4HDD

2
τ . (3)

The residual demand QS
τ for the strategic players is then given by:

QS
τ = Qτ − q̂fringeτ = Qτ − λ̂τ − β̂ln(pwτ ) (4)

Finally, we write:

QS
τ = âτ − βln(pwτ ), âτ ≡ Qτ − λ̂τ . (5)

Seasonality and Peak Periods. Our framework allows for shifts in demand to accom-

modate both seasonality (cross-month variation) and peak periods (within-day variation).

Both sources of fluctuations in demand are important for a realistic representation of elec-

tricity wholesale markets and are introduced in the model through shifts in the intercept of

the residual demand curve. Using τ to denote the demand curve in year y and month m,
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and letting peak period be p ∈ {off, peak}, the following holds:

aoffτ = ay + am (6)

apeakτ = (ay + am)apeak (7)

where ay is the baseline yearly intercept in the demand curve, and am and apeak > 1 are,

respectively, the seasonality and peak period shifters.

We estimate and solve the model separately for each pair of m and p. Whenever we

report monthly figures they are averages over all the different prices obtained through that

month, weighted by the fraction of hours that demand is either peak or off-peak.

3.2 Firms

3.2.1 Generation Cost

Following BMS and Mansur (2007), the marginal cost of generating electricity ($/MWh) for

plant i at time t is given by:

cit = V OMit +HRit ×
(
P f
t + P s

t r
s
it + P n

t r
n
it

)
, (8)

where V OM is the variable non-fuel operations-and-maintenance cost ($/MWh), and HR

is the heat rate (MMBtu/MWh) that captures efficiency in turning heat input from fuel

to electricity. Additionally, rs and rn are the fuel-specific SO2 and NOx emission rates

(lbs./MMBtu), when applicable. Finally, P f is the fuel price ($/MMBtu) while P s and P n

are the SO2 and seasonal NOx permit prices ($/lb.). In our empirical analysis, the VOM

costs, the heat rates, and the emission rates, exhibit variation by plant and year. The fuel

prices exhibit variation by firm, year, and month. The permit prices exhibit variation by

year and month.

A firm’s marginal cost function is a step function where each step represents a plant with

capacity K and marginal cost c. It is constructed by ordering its plants in terms of their

marginal costs. Because we observe all of the components in (8), we can compute each firm’s

marginal cost directly from the data.

3.2.2 Evolution of Plant Portfolios

Investment affects the shape of the marginal cost function by changing the firm’s portfolio

of plants. In the beginning of each year, firms choose to invest in coal- or gas-fired capacity.

Although we do not assume a minimum size of a plant that firms can invest in, we assume
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that firms can choose the capacity of the new plant in increments of 1 megawatt (MW).

To determine the heat rate of new plants, we rely on Section 111(b) of the Clean Air Act

discussed in Section 2.2, which essentially requires that new capacity is of the best available

technology (BAT). To implement this assumption in our model, we assume that firms invest

in plants that have the best (lowest) heat rate during the investment year.

Aside from simplifying the choice of the plant type firms invest in, the BAT assumption

also help us reduce the dimensionality problem of our model, which emerges due to two

reasons. First, we need to take stock of the type of plant firms invest in at each point

in time. Second, when evaluating different investment strategies, firms have to be able to

compute future profit flows under different investment scenarios involving different paths for

their plant portfolio.

Figure 4 illustrates how the BAT assumption helps us to address the dimensionality prob-

lem. Since new plants must have the best heat rate, they are likely to be infra-marginal,

at least, in the time horizon whereby plants that existed in 2013 are still supplying pos-

itive quantities in equilibrium. The two lowest steps of the supply curve in panel (a) of

Figure 4 represent investment in new capacity, while the remaining portion of the supply

curve corresponds to existing capacity.15 Panel (a) illustrates the market equilibrium when

we keep track of all the information about new capacity that the firm invests in. Panel (b)

instead combines the two lowest steps into one. As one can see, it suffices to keep track of

an average of all the new capacity that the firm invests in because averaging across these

individual units does not affect the equilibrium quantities, prices, and profits. Thus, as long

as new capacity is infra-marginal, tracking the firm-level cumulative BAT capacity and the

associated weighted average heat rate is sufficient for our empirical analysis.

Denoting fuel-type as f ∈ F = {coal, gas}, let ifjt be the investment by firm j in coal- or

gas-fired capacity at time t. In addition, let Kjt be the cumulative BAT capacity given by:

Kjt+1 = Kjt + icoaljt + igasjt . (9)

Because the heat and emission rates for coal- and gas-fired capacity are different, we keep

track of the share of gas-fired BAT capacity:

Sjt+1 =
SjtKjt + igasjt

Kjt+1

. (10)

For heat rates, as well as the remaining components of the fuel-specific marginal costs, we

15It is not necessary for new capacity to represent the cheapest plants in the supply curve since equilibrium
quantities, prices and profits are invariant to rearranging the “infra-marginal” steps of the supply curve.
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track a weighted average at time t. For example, in the case of the heat rate for gas-fired

BAT capacity, we track the following weighted average:

HRgas
jt+1 =

SjtKjt

SjtKjt + igasjt

HRgas
jt +

igasjt

SjtKjt + igasjt

hrgasjt , (11)

where hrgasjt is the heat rate associated with new investment in gas-fired capacity. The BAT

capacity for firm j at time t is Kjt and the marginal cost is given by:

cjt = (1− Sjt)ccoaljt + Sjtc
ng
jt , (12)

where cjt is computed using (8) noting that there are fuel-specific components entering the

equation.

Holding the vector of prices constant, a firm’s new marginal cost curve, which is a col-

lection of (Kjt+1, cjt+1) points, is obtained through a shift of the marginal cost curve at time

t (see Figure 5). For example, suppose there is only one firm investing in gas-fired capacity

that gives rise to BAT capacity Kjt and marginal cost cjt, which we assume is less than the

marginal cost of all existing capacity for illustration purposes. The leftmost point of the

new marginal cost curve becomes (Kjt, cjt). The remaining points of the marginal cost curve

become (K−jt + igasjt , c−jt), which is consistent with a horizontal shift equal to the amount of

investment.

Renewable Sources. When making investment decisions, firms take into account the

expected evolution of generation capacity from renewable sources. Our model accommodates

changes in capacity due to renewable sources in a flexible way through exogenous shifts in

the BAT capacity over time. We do not, however, allow investment in renewable sources

to respond strategically to changes in the coal- and gas-fired capacity. This assumption is

supported by binding Renewable Portfolio Standards (RPSs) we observe in the data, at least,

in the medium run. An RPS mandates that a specific fraction of all electricity generated

has to come from renewable sources. With a binding RPS, investment in renewable sources

is driven by regulation rather than profit maximization. We collect information on the RPS

future mandates for the different states that comprise the PJM market and use these in our

simulations.
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3.3 Equilibrium

3.3.1 Electricity Market Equilibrium

To model firms’ supply decisions in the wholesale electricity market, we build on the results

in Wolak (2000) and BMS. Wolak and BMS show that electricity markets in the presence of

forward contracts, as is the case for PJM, generate outcomes that are much closer to perfect

competition than to an oligopoly (Cournot) game.16 Therefore, we implement our model

as if firms were price-takers producing electricity subject to capacity constraints.17 The

equilibrium wholesale electricity price is then determined by the intersection of the demand

and supply curves.

Market supply is determined by ordering all available capacity in terms of its marginal

costs, similar to Figure 5. This “merit order” dictates the sequence in which the various

plants are dispatched as the demand for electricity increases. The equilibrium wholesale

price is the marginal cost of the most expensive plant called to serve demand. Given fuel

and emissions permit prices, the market supply function is a step function described by the

pair (K, c), where K is the capacity with marginal cost less than or equal to c. Given that

we observe all of the components in (8), we can construct this step function directly from

the data.

Remark. In our model, investment decisions are strategic. Hence, firms decide on invest-

ment considering its impact on other firms, and vice-versa. The assumption of a perfectly

competitive wholesale market combined with strategic investment, under the existence of

forward commitments, is not inconsistent with theory. For example, Adilov (2012) models

firms’ investment in capacity in order to study the effects of forward markets on competi-

tion and efficiency extending the standard Allaz and Villa (1993) framework. The forward

market takes place after the investment decisions are committed but before the spot market.

Importantly, endogenous capacity choices affect strategic behavior in the forward and spot

markets. Outside of electricity market settings, Dixon (1985) analyzes a model where the

16We confirmed the results from BMS in our own setting by modeling the wholesale electricity market
assuming perfect competition and Cournot. We found that perfect competition generates equilibrium prices
that are reasonable and consistent with predictions from futures markets, while Cournot produces equilibrium
prices that are unrealistically much higher. In our case, forward commitments are not as straightforward to
deal with as in BMS since our model is dynamic. Either we assume forward commitments are exogenous and
determine its evolution outside of the model (or simply take them as fixed), or treat these as endogenous and
model how firms’ choose these commitments in equilibrium. While interesting, modeling the endogenous
evolution of forward commitments is beyond the scope of the paper.

17Our assumption for a competitive setting in the PJM energy market is also consistent with the conclusions
in the State-of-the-Market (SOM) reports prepared by the PJM Market Monitoring Unit for 2003–2012. The
SOM reports analyze competition within, and efficiency of the PJM markets using various metrics, such as
market concentration, the residual supply index, and price-cost markups.

15



market is competitive but firms can strategically invest. He finds that, in equilibrium, firms

under-invest to drive prices above “potential” marginal cost, i.e. what marginal cost would

have been if the firm invested the socially optimal level.

3.3.2 Markov Perfect Nash Equilibrium

The actions chosen by each firm j are represented by ajt = {qjt, icoaljt , igasjt } and let at be the

vector of firm actions at time t. The variable qjt captures the output of firm j’s plants, while

ifjt is investment as defined earlier. Although we use a single time subscript to maintain

notational simplicity, the output decisions in the electricity market are monthly, while the

investment decisions are annual.

The state vector is given by:

st =
(
αt,p

F
t ,
{
Kjt, Sjt, HR

coal
jt , HRng

jt

}N
j=1

)
. (13)

The endogenous part of the state vector,
{
Kjt, Sjt, HR

coal
jt , HRng

jt

}
, relates to BAT capacity

investment and its evolution is discussed in the previous section. In terms of the exogenous

state variables, αt is the intercept of the inverse residual monthly demand for electricity and

pft is a vector of monthly coal and gas prices.18 The future path of the exogenous state

vector is allowed to exhibit some uncertainty, which can affect the investment decisions.

We write the static profit function as follows:

πjt(at, st, νjt) = πjt(at, st)− Γjt(at, νjt), (14)

where

πjt(at, st) ≡ prjt × qrjt + pwt × (qjt − qrjt)− C(qjt, st) (15)

represents the profit from the wholesale electricity market excluding the investment cost

Γjt(at, νjt). Here, prjt is the price the firm receives from retail sales commitments qrjt, which

are assumed to be sunk at the time production decisions are made for the wholesale market,

and pwt is the equilibrium wholesale electricity price. Finally, C(qjt, st) is the total cost of

producing qjt given st.

18The vector of monthly SO2 and seasonal NOx permit prices is set at zero, consistent with the current
situation in the electric power industry. Therefore, they are not included in the state vector. Likewise, the
remaining components of the BAT cost, such as the VOM cost, are held constant at the current values and,
hence, need not be considered in the state vector.
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Investment cost is given by:

Γjt(at, νjt) =
∑
f∈F

(γf + νfjt)i
f
jt, (16)

where νjt is a private shock that is independently distributed across firms and time and

drawn from a common distribution, and γf is an investment parameter that we need to

estimate.19

Firms’ strategies depend only on the current state (including the private investment

shock) as in Ericson and Pakes (1995). That is, for firm j, strategy σj maps the state

and private shock into actions. The strategy profile σσσ is a Markov Perfect Nash Equilibrium

(MPNE) if each firm j’s strategy σj generates the highest value among all alternative Markov

strategies σlj given the rivals’ profile σσσ−j:

Vj(s;σσσ) ≥ Vj(s;σlj,σσσ−j), (17)

where Vj(s;σσσ) is the ex ante—before observing the realization of the private shocks—value

function for firm j given by

Vj(s;σσσ) =
∞∑
t=0

βtE [πjt(at, st, νjt)|s0] (18)

amd β is the discount factor common to all firms.

Remark. In our model, the benefits from investment come from the profits firms earn

in the wholesale electricity market. However, PJM encourages investment in new capacity

through capacity auctions. The motivation for the capacity auctions is adequacy of resources

to ensure that the demand for electricity can be met at all times in the near future. Utilities

and other electricity suppliers, collectively known as load serving entities (LSEs), are required

to have the resources to meet their customers’ demand plus a reserve. The LSEs can meet the

resource requirement with generating capacity they own, with capacity they purchase from

others under contract, through demand response—in which customers reduce their usage in

exchange for payment—or with capacity obtained through the capacity auctions themselves.

Since we do not model capacity auctions, the reader may worry that our setup fails to

account for capacity payments that incentivize firms to invest. Although we do not explic-

19The specification for investment cost given in (16) only allows for positive adjustments to capacity. A

version of (16) with scrap value would be Γjt =
∑

f 1[ifjt>0](γ
f
1 + νf1jt)i

f
jt + 1[ifjt<0](γ

f
2 + νf2jt)i

f
jt as in Ryan

(2012). Thus, unlike Ryan (2012) or Fowlie et al. (2016), there is no scrap value from closing down a plant.
Given that we do not have fixed costs in our model, the firm will just keep unused plants idle.
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itly model capacity payments, our model can accommodate such payments. With capacity

payments, Γjt becomes the investment cost net of their expected future value. Of course,

this interpretation is valid only when all new investment receives capacity payments. Fur-

thermore, our model can accommodate heterogeneity in capacity payments because of zonal

(location-specific) pricing through the private shock νjt. It is also important to note that

during the period relevant for our analysis (2003–2012), capacity payments have accounted

for 6% of the total wholesale price per MWh when energy payments accounted for 82%.20

4 Estimation

The key components of the structural model that we need to estimate are generation costs,

the fringe supply curves, and the investment cost parameter. We compute plant-level gener-

ation costs directly from the data, as described in Section 3.2.1. We estimate fringe supply

using two-stage least squares where monthly quantity demanded serves as our instrument

for price, exploting the idea that short-run wholesale electricity demand is completely in-

elastic. Finally, we estimate the investment cost parameter using the two-stage methodology

in Bajari et al. (2007). In the first stage, we estimate policy functions from the data using

observable state variables. The policy functions are reduced-form because they provide esti-

mates of parameters that are not primitives of the underlying economic model of investment.

In the second stage, we search for the investment cost parameter that best rationalizes firms’

observed behavior and transitions of the state variables. The advantage of this approach

is that the investment cost parameter can be estimated without the need to solve for the

equilibrium of the game. Section A.4 in the Online Appendix discusses estimation in greater

detail. We now present our results.

20See Table 9 of the 2012 PJM State of the Market Report Volume I. Modeling firm behavior in the
capacity market is beyond the scope of the paper. As a background, effective June 2007, the PJM Capacity
Credit Market (CCM), which had been the market design since 1999, was replaced with the Reliability
Pricing Model (RPM) capacity Market. Under the CCM, LSEs could acquire capacity resources by relying
on the PJM capacity market, by constructing generation, or by entering into bilateral agreements. Under
RPM, there is a must-offer requirement for existing generation that qualifies as a capacity resource and a
mandatory participation for LSEs with some exceptions. LSEs must pay the locational capacity price for
their zone and zonal prices may differ depending on transmission constraints. LSEs can own capacity or
purchase capacity bilaterally and can offer capacity into the RPM auctions when no longer needed to serve
load. Capacity obligations are annual and Base Residual Auctions (BRAs) are held for delivery years that
are three years in the future. There are also incremental auctions that may be held for each delivery year if
there is a need to procure additional capacity resulting from a delay in a planned large transmission upgrade
that was modeled in the BRA for the relevant delivery year. Bushnell et al. (2017a) provide an in-depth
discussion of the capacity markets.
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4.1 Estimation Results

Fringe Supply Estimates. Table 5 contains the estimates for the fringe supply equation.21

The price coefficient, which is of main interest for the subsequent analysis, is generally highly

significant. According to our preferred specification, in which the price enters in logs, the

implied elasticity at the sample averages of fringe supply and price of is 0.74.

Investment Cost Estimates. The estimate of investment cost reported in Table 7 is

in $/MW of gas-fired capacity. Note that given the lack of investment in coal-fired capacity

implied by our model, it is not possible to estimate the costs for coal-fired capacity. Our

estimate of around $1.4 million per MW for gas-fired capacity is comparable to the estimates

in Spees et al. (2011), which are up to $1 million per MW. The reported standard error of

approximately $32,000 per MW does not take into account the first-stage estimation error.22

4.2 Time Paths and Model Fit

Exogenous State Variables. Figure 6 shows the time series paths (2013-2062) for vari-

ous exogenous state variables in the model. We start by showing the path for the annual

average of the residual demand intercept ât (panel (a)). We take the value of the intercept

from 2012 from the estimated residual demand curve, and let it increase at a rate of 1% per

year from that point onwards. We allow the monthly demand curve to exhibit seasonality

patterns consistent with the data. We do this by regressing demand (load) on month dum-

mies and saving the corresponding estimated coefficients, which are then used to adjust the

corresponding monthly demand intercept around the annual average. Moreover, for each

month, there are two different demand curves: one for peak and another for off-peak peri-

ods. When we simulate our model forward, we assume that the relation between these two

demand curves (given by parameter apeak in (7)) stays constant over time, and equivalent to

historical averages.

The coal heat rates associated with new investment are assumed to be fixed at their 2012

levels (10 MMBtu/MW), while their gas counterparts are assumed to be falling over time

from 7.6 MMBtu/MWh to 7.2 MMBtu/MWh; see panel (b). The trend for the gas heat

rates associated with new investment is obtained by projecting the linear trend of the log gas

BAT heat rates for 2003–2012 to 2013–2062. The remaining cost components, VOM costs

and CO2 rates, are held constant from 2013 onwards.23

21We refer the reader to Section A.2 for some additional descriptive statistics.
22We calculate standard errors using 1,000 bootstrap replications by resampling from the moment inequal-

ities and ignoring the first-stage estimation error as in Bajari et al. (2013).
23The CO2 emission rates are relevant in the policy evaluations section of the paper. The SO2 and NOx
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In the case of coal prices, we extrapolate the EIA annual projections for 2013–2035 from

the 2012 Annual Energy Outlook reference case to 2062 using the implied compound annual

growth rate (panel (c)). For gas prices, we use monthly NYMEX Henry Hub futures prices

for 2013–2028. We expand the series until 2062 using flat extrapolation of the 2008 levels.

Given the collapse in SO2 and seasonal NOx permit prices in recent years, we assume that

they will remain at zero for 2013–2062.24

Endogenous Variables. Figure 8 shows similar time paths for a variety of endogenous

variables, such as market-wide outcomes, and firm-level generation, profits, capacity, and

heat rates. The BAT capacity, which is exclusively gas-fired, exhibits an upward trend

increasing from 1,400 MW in 2014, the first year of investment, to 10,900 MW in 2062

(panel (a)). As a result, the share of output (electricity generation) that BAT capacity

accounts for increases over time with roughly half of the increase taking place the first 15

years (panel (b)). Electricity generation (panel (c)) and prices (panel (d)) increase over time,

too. Following a period with a downward trend between 2013 and 2030, the share of gas in

electricity generation increases from 18% to 30% (panel (e)). After about 20 years of growth

of the share of coal in electricity generation that peaks at 40%, we see slight a decline in the

later years. The share of sources other than coal and gas in electricity generation decreases

from 47% in 2013 to 31% in 2062 (panel (f)); recall that we assume no investment in these

fringe sources.

Table 8 shows the investments in gas-fired capacity by firm for 2013–2062. During the

same period, there is no investment in coal-fired capacity. Overall, we see 51 instances of

investment associated with close to 11,000 MW of gas-fired capacity. Three firms account

for roughly 3/4 of the total investment. Exelon accounts for 2,400 MW, followed by NRG

with around 2,550 MW and AES with 2,400 MW. Exelon invests 15 times. AES and NRG

invest 12 times. It is important to keep in mind that this table tracks investment flow and

not net investment. Investment may imply replacement of old units that become more costly

to operate with new units. A detailed timeline of investment by firm is available in Figure 7.

Model Predictions. Finally, in Figure 9 we compare the electricity price implied by

our model with the on-peak electricity price for PJM from NYMEX futures for the period

2016/04–2019/12.25 As we can see, our model tracks reasonably well the NYMEX futures

emission rates do not impact our calculation since the price of the corresponding permits price is set to zero
in the forward simulations.

24Our use of Henry Hub futures prices for gas and the assumption regarding zero permit prices are both
consistent with the approach taken in PJM (2016) regarding projections of gas and permit prices.

25Off-peak is a period of time when consumers typically use less electricity: normally, weekends, holidays
or times of the day when many businesses are not operating. PJM typically considers New Year’s Day,
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prices.26

5 Counterfactual Simulations

We use the estimated model to compare economic outcomes under counterfactual CO2 emis-

sions regulations. Specifically, we simulate the model under two regulatory regimes: plants

face a PJM-wide regional CO2 market and plants face uncoordinated state-by-state mar-

kets. Our goal is to measure the inefficiency with state-by-state CO2 markets relative to

the regional one. We begin our analysis by looking at the “static” case, where we compute

outcomes holding best available technology (BAT) capacity fixed. In this case, investment

is exogenous and BAT capacity is the same in the two regulatory regimes. We then shift our

focus to the “dynamic” case, where investment is the result of firms’ optimal behavior and

BAT capacity is endogenous. Different investment incentives now impact the comparison in

economic outcomes between the two regulatory regimes. We provide a detailed discussion of

computation in Section A.5 of the Online Appendix.

To implement the counterfactual regulatory regimes, we assume that the PJM states are

subject to the mass-based targets of the Clean Power Plan (CPP) shown in Table 2. These

targets limit the quantity of CO2 emissions (in short tons) that states can emit annually.

There are interim targets for 2022—2029 followed by a permanent target from 2030 onwards.

With separate CO2 markets, each state’s emissions have to be less than or equal to the annual

targets. With a single CO2 market, emissions only need to be less than or equal the sum of

the targets across the PJM states (see Figure 10). Although we do not explicitly model a

market for emissions permits, we take the shadow prices of the CO2 emissions constraints as

our CO2 prices. In the case of the single CO2 market, there is one CO2 price corresponding to

the shadow price of the regional emissions constraint. In the case of separate CO2 markets,

the CO2 prices are state-specific and correspond to the shadow price of each state’s emissions

constraint.

The CO2 price increases the cost of generating electricity each plant. This additional

cost is different for plants with different heat (MMBtu/MWh) and emission (lbs./MMBtu)

Memorial Day, Independence Day, Labor Day, Thanksgiving Day and Christmas Day, as well as weekend
hours and weekdays from 11 p.m. to 7 a.m. as off-peak. See http://www.pjm.com/en/Glossary.

26In Figure A3, we compare the behavior of heat rates, fuel prices, generation and capacity before and
after 2012, the last year in our sample. In general, we see a transition that is smooth and a trend towards
more gas in both generation and capacity. We do not allow for explicit divestitures but some of the coal
capacity will start to become extra-marginal.
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rates, and locations. The marginal cost for plant i in state s at time t is thus given by

cCist = cist + PC
st × rCist × ζ, (19)

where cist is the generation cost excluding the cost of emissions ($/MWh), PC
st is the CO2

price ($/ton), rCist is the heat rate-adjusted emissions rate (lbs./MMBtu × MMBtu/MWh),

and ζ is an appropriate scaling factor to take into account units of measurement. In the case

of a single market, PC
st = PC

t , ∀s ∈ S, where S is the set of the eleven PJM states listed in

Table 2.

Since CO2 prices affect plants’ generation cost, these prices also affect the shape of

the wholesale electricity market supply curve. Market demand and supply determine each

plant’s equilibrium electricity generation, which in turn determine emissions. Emissions then

determine the extent the emissions constraint binds and the resulting equilibrium CO2 price.

Therefore, equilibrium in each period requires finding a set of prices that simultaneous clear

the electricity and emissions markets.

We make a series of assumptions for computational feasibility, but are, nonetheless, con-

sistent with the institutional details of our setting. First, only emissions from existing

capacity built by 2012 are subject to CO2 prices. Although emissions from capacity built

after 2012 are exempt from the CO2 price, post-2012 capacity must have the lowest heat and

emissions rate during the investment year. Second, we assume that heat rate improvements

are exogenous.27 Third, generation from renewable sources increases exogenously according

to annual growth rates in the CPP.28 Finally, we assume an upper bound of $100 for the

CO2 price and set the post-2030 CPP targets at their 2030 levels.29

5.1 Static Analysis: Exogenous Investment

Holding capacity fixed, electricity generating cost with a single CO2 market is expected to

be lower than with separate CO2 markets. A single CO2 market equates marginal CO2

27See discussion on exogenous state variables in Section 4.2, as well as the additional details in Section A.5.
28See the June 2014 CPP proposed rule technical support documentation (TSD) at https://www.

epa.gov/cleanpowerplan/clean-power-plan-proposed-rule-technical-documents. The relevant TSD
spreadsheet provides state-specific growth rates for renewable energy for 2020–2029. We assume that the
average growth rate for 2020–2029 holds for the entire period of our simulations. Moreover, we assume that
nuclear capacity does not change.

29Borenstein et al. (2016) argue that extreme price outcomes are likely in most cap-and-trade markets
for greenhouse gas (GHG) emissions for two main reasons. The first is GHG emissions volatility. The
second is the low price elasticity of GHG abatement over the price range generally deemed to be acceptable.
Recognizing the problems created by uncertainty in emissions permit prices, hybrid mechanisms that combine
caps on emissions and price collars (both lower and upper bounds) have been proposed. See their Section I
and the references therein.
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abatement costs across markets, leading to lower overall compliance costs. Insights from the

trade literature, however, tell us that an integrated product (electricity) market can mitigate

inefficiencies associated with separate CO2 markets as long as production from markets with

high CO2 prices can be reallocated to markets with low CO2 prices, all else equal.

We solve for the equilibrium of the electricity and CO2 market(s) as a function of BAT

capacity. In this analysis, we assume that BAT capacity is fixed at K ∈ [1000, 60000]

from 2013 onwards. Panel (a) of Figure 11 plots the present discounted value of electricity

generating cost for single and separate CO2 markets as a function of BAT capacity. Panel (b)

plots the difference in costs instead, which is our measure of static inefficiency. As expected,

conditional on having the same BAT capacity (hence, total capacity), cost with separate

CO2 markets is generally higher than with a single CO2 market. Interestingly, both costs

decrease as BAT capacity increases, reflecting the fact that BAT capacity is more efficient

and emit less CO2 than the existing capacity.

Looking at the difference in costs in panel (b), we see that static efficiency first increases

as BAT capacity increases, and then decreases after some point. The initial increase is due

to the assumption that CO2 prices are constrained to be below $100 per ton. When BAT

capacity is low, CO2 markets during peak-hours and summer months tend to induce CO2

prices that hit this upper bound. Thus, the lower BAT capacity is, the more instances the

upper bound is binding which then induces a positive relationship between BAT capacity and

static inefficiency. However, as BAT capacity increases, there will be a point where BAT

capacity is sufficient such that there is no market where the upper bound on CO2 prices

binds. Once this occurs, the higher the BAT capacity is, the lower the static inefficiency.

This negative relationship between BAT capacity and static inefficiency reflects the idea that

relaxing the capacity constraint facilitates reallocation of production which then mitigates

the inefficiency with separate CO2 markets.

We find that the maximum static inefficiency is $7.8 billion which occurs at BAT capacity

of 30,000 MW. This difference is about 50% of the environmental compliance cost, which

is the difference in electricity generation plus investment costs with and without the CPP

assuming separate CO2 markets. Finally, static inefficiency goes to zero for sufficiently large

BAT capacity (more than 50,000 MW). In this case, capacity constraints no longer bind and

electricity generation costs with single and separate CO2 markets are the same.

5.2 Dynamic Analysis: Optimal Investment

We now compare outcomes taking into account firms’ optimal investment. The model we

used for estimation assigns the top ten firms in PJM as strategic firms in terms of the invest-
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ment decision. For computational reasons, we instead analyze simpler modeling scenarios. In

the first scenario, we solve a model where the ten strategic firms fully coordinate investment

hence acting as a single firm. In the second scenario, to add an element of competition, we

solve a model where the ten firms are assigned into two coalitions and decide on optimal

investment with maximizing the coalition’s present value discounted profit in mind. We also

simulate the following two scenarios: (i) a social planner decides on investment and (ii) firms

are nonstrategic in the sense that they invest as long as the marginal benefit is higher than

the cost of capital. Note that in all scenarios, we maintain the same set of plants that we

considered during estimation, hence preserving plant-level heterogeneity across the region.

The key message that inefficiency with separate CO2 markets is completely mitigated even

after accounting for the additional cost of investment is robust across all scenarios. In what

follows, we first discuss the scenarios with the social planner and nonstrategic investment.

These two scenarios provide a useful benchmark to frame the discussion of the other two

scenarios with strategic investment.

5.2.1 Social Planner and Nonstrategic Investment

The social planner chooses investment to maximize the present value discounted sum of social

surplus. In maximizing social surplus, the planner takes into account consumer surplus from

electricity consumption, industry profits, as well as damages from CO2 emissions calculated

assuming the social cost of carbon is $37 per metric ton. It is useful to discuss the social

planner scenario vis-a-vis the scenario where investment is chosen to maximize the present

discounted sum of consumer surplus and profits, without internalizing damages from CO2

emissions. As Bushnell et al. (2017b) argue, this latter scenario is equivalent to a scenario

with competitive investment. We refer to this latter scenario as the scenario with nonstrategic

investment.

The steady state (2030) BAT capacity is 34,250 MW in the case of the social planner

(Table 9). In the case of nonstrategic investment, BAT capacity is 48,150 MW with a

single CO2 market and 51,300 MW with separate CO2 markets. Since that BAT capacity

is higher with nonstrategic investment, electricity prices are lower—$28 per MWh (single

CO2 market) and $27 per MWh (separate CO2 markets)—compared to $34 per MWh in

the case of the social planner. However, cheaper electricity prices in the case of nonstrategic

investment comes at a cost. Average CO2 emissions in the case of the social planner are

374.2 million tons while emissions assuming nonstrategic investment are about 10% higher.

The present value discounted welfare for the social planner is $1,142 billion. In the case of

the nonstrategic investment, the present value discounted welfare is essentially identical in

the two regulatory regimes: $1,134 billion with a single CO2 market and $1,133 billion with
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separate CO2 markets.

The difference in welfare between the two scenarios is driven by how damages from CO2

emissions enter the objective function for investment. Unlike in the social planner case,

nonstrategic investment does not fully internalize the damages from emissions. Even with

a single CO2 market, since the BAT capacity is not subject to a CO2 price, there will be

overinvestment leading to emissions leakage (Fowlie, 2009). With separate CO2 markets, the

incentive to invest is even stronger, exacerbating overinvestment and the emissions leakage

problem. Nonetheless, the difference in welfare between the two regulatory regimes is small

and is not driven by the lack of coordination of the CO2 markets across the states per se

but by the regulatory treatment of investment.30 The present value discounted electricity

generation costs is actually lower ($58.5 billion) with separate CO2 markets than with a

single CO2 market ($59.5 billion) though the difference is quite small.

5.2.2 Strategic Investment

Single Firm. In this scenario, the ten strategic firms fully coordinate investment to maxi-

mize the sum of their present value discounted profits. With a single CO2 market, the steady

state BAT capacity is suppressed to 4,000 MW raising the average electricity price to $89

per MWh. In contrast, with separate CO2 markets, the steady state BAT capacity is 11,300

MW and the average electricity price is $86 per MWh. Electricity generation cost is lower

with separate CO2 markets ($185.9 billion) that with a single CO2 market ($212.9 billion).

Although investment cost is higher with separate CO2 markets, the difference in the invest-

ment costs between the two regulatory regimes is smaller compared to the difference in the

electricity generation costs. As a result, the overall cost is actually lower with separate CO2

markets. Moreover, the average CO2 emissions are in fact lower with separate CO2 markets

(258.1 million tons) than with a single CO2 market (270.1 million tons), contrary to what

one expects with emissions leakage. This reduction in emissions stems from investment in

generating units that emit less per unit of electricity than the existing units.

Present value discounted welfare with separate CO2 markets is $1,139 billion, which is

larger than its counterpart with a single CO2 market ($1,130 billion). It may seem surprising

that a setting with an inherent inefficiency—absence of a single market for correcting the

externality—yield higher welfare. However, this inefficiency is mostly static in nature when

we do not take into account the incentives to invest. The scenario with separate CO2 markets

yield higher welfare because there is a second distortion that is corrected: profit-maximizing

strategic firms take into account the effect of investment on the evolution of electricity prices.

Since, all else equal, an increase in capacity today leads to a decrease in future prices, firms

30See Section A.6 for a discussion of a different regulatory treatment of new plants.
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have a strong incentive to withhold investment. The additional incentive to invest in the

case of separate CO2 markets leads to higher welfare since it brings us closer to the socially

optimal level of BAT capacity.

Two-firm Game. We now relax the assumption of fully coordinated investment by

introducing competition. For computational reasons, we study a two-firm (leader-follower)

investment game.31 We create two “coalitions” of strategic firms by allocating all the existing

plants owned by the strategic firms equally (also in terms of characteristics) into two groups.

We treat one coalition as the leader (invests first) and one coalition as the follower (invests

second). Each coalition decides strategically on investment taking into account profits earned

from the plants it owns and how investment changes endogenous state variables, including

BAT capacity of all firms in both coalitions. We maintain the assumption of competitive

behavior in both the electricity and CO2 markets, and solve the stage game by finding the

market clearing prices. With a competitive wholesale electricity market, the equilibrium

quantity and price are not affected by our assumption on the number of investing firms,

conditional on the set of plants in the market.

Introducing competition weakens firms’ incentives to strategically withhold investment

in order to raise prices. It is still the case, however, that the two-firm game implies underin-

vestment. Total BAT capacity is 10,400 MW with a single CO2 market, and it is 17,850 MW

with separate CO2 markets. Although these capacity levels are lower than the socially opti-

mal level, they exceed their counterpart with fully coordinated investment. In this two-firm

game, the players are able to raise electricity prices above efficient levels but not as much as

the monopolist does. The electricity prices are now $72 per MWh (single CO2 market) and

$67 per MWh (separate CO2 markets).

Consistent with our earlier findings, generation cost is lower with separate CO2 markets

($128.9 billion) than with a single CO2 market ($161.8 billion). Moreover, the difference in

investment cost ($24.6 billion versus $14.5) is small enough such that on net, overall costs

is lower with separate CO2 market. Finally, separate CO2 markets also yield higher total

welfare. The difference in total welfare between the two regulatory regimes is $3.8 billion

and is explained by the fact that investment rates are closer to socially optimal levels with

separate CO2 markets. Moreover, competition has the effect that most of the new capacity

is built earlier even when compared to the case of a social planner. This is the result of the

leader’s effort to preempt its rival by investing early in the game.

31See Section A.5.2 for details on computation.
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6 Conclusion

In this paper, we show that separate markets for an environmental externality, which may

emerge due to lack of regulation coordination across jurisdictions, yield almost the same

outcomes as a single market that emerges if coordination is possible. The main driving force

behind our findings is investment when firms participate in an integrated product market,

which mitigates some of the inefficiencies associated with separate markets for the externality

that emerge in the absence of coordinated regulation.

Our workhorse is a dynamic structural model of production and investment for the largest

wholesale electricity market in the world, the Pennsylvania-New Jersey-Maryland (PJM)

Interconnection. The environmental regulation of interest entails targets for carbon dioxide

(CO2) emissions from electricity generation achieved via a market for emission permits with

and without coordination across states participating in PJM. In the case of coordinated

regulation, there is a single PJM-wide CO2 market. With uncoordinated regulation, there

are separate CO2 markets, one for each of the states.

Our model preserves the rich plant-level cost heterogeneity in the data while being

tractable enough to evaluate market outcomes across the two regulatory regimes. We achieve

tractability by assuming that market participants invest in the best available technology

(BAT) at the time of the investment, which is consistent with the current interpretation of

the Clean Air Act. In our setup, CO2 emissions from BAT capacity are exempt from the

targets. As a result, the location of firms’ investment is irrelevant—only the total amount of

investment matters. An interesting direction for future research is to relax this assumption

and explore the geographic dimension of firms’ investment choices.

Given the recent developments in U.S. environmental policy, the future of federal reg-

ulations aiming to curb CO2 emissions is unclear. Therefore, an important question that

can be answered using our framework is whether states have unilateral incentives to adopt

emission restrictions in the absence of any federal mandate. For example, Abito (2019b) uses

our model to analyze the impact on PJM when Pennsylvania unilaterally joins the Regional

Greenhouse Gas Initiative. The potential benefit of unilateral adoption would be to provide

incentives for investment in more efficient capacity, as in the case with uncoordinated reg-

ulation, which would bring production into states that adopt those restrictions. It is also

important to emphasize the potential benefits for consumers in states that do not adopt

any emissions regulations since more efficient capacity may decrease electricity prices for

the whole region. Any careful analysis should take into account the interaction between the

product and externality markets and the adjustments that occur beyond the short-run, such

as investment in new capacity..
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7 Tables

Table 1: Capacity by source

year coal gas nuclear oil hydro solid waste wind total

2005 67.8 45.0 31.2 11.8 7.0 0.5 163.5

2006 66.5 47.0 30.0 10.7 7.1 0.6 162.1

2007 66.2 47.6 30.9 10.6 7.4 0.7 0.2 163.5

2008 66.9 48.1 30.4 10.7 7.4 0.7 0.3 164.3

2009 68.1 48.9 30.8 10.7 7.9 0.7 0.7 167.3

2010 67.9 48.5 30.5 10.2 8.0 0.7 0.7 166.5

2011 75.1 50.6 32.6 11.3 8.0 0.7 0.7 178.8

2012 76.1 52.0 32.9 11.5 7.8 0.7 0.7 182.0

(a) MW (thousands)

year coal gas nuclear oil hydro solid waste wind total

2005 41.5 27.5 19.1 7.2 4.3 0.3 100

2006 41.0 29.0 18.5 6.6 4.4 0.4 100

2007 40.5 29.1 18.9 6.5 4.5 0.4 0.1 100

2008 40.7 29.3 18.5 6.5 4.5 0.4 0.2 100

2009 40.7 29.2 18.4 6.4 4.7 0.4 0.4 100

2010 40.8 29.1 18.3 6.1 4.8 0.4 0.4 100

2011 42.0 28.3 18.2 6.3 4.5 0.4 0.4 100

2012 41.8 28.6 18.1 6.3 4.3 0.4 0.4 100

(b) MW (%)

Note: based on PJM state of the market reports available at http://www.monitoringanalytics.
com/reports/PJM_State_of_the_Market/2018.shtml. For additional details, see Section 2.1.
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Table 2: Clean Power Plan mass-based targets (million short tons)

state 2022 2023 2024 2025 2026 2027 2028 2029 2030

DE 5.524 5.355 5.166 5.072 4.971 4.846 4.806 4.762 4.712

IL 32.087 30.907 29.371 28.737 28.050 27.224 26.686 26.102 25.458

IN 30.510 29.389 27.931 27.328 26.676 25.892 25.382 24.829 24.218

KY 14.327 13.793 13.091 12.805 12.494 12.122 11.871 11.598 11.297

MD 18.197 17.518 16.626 16.263 15.869 15.396 15.076 14.730 14.348

NC 1.333 1.286 1.227 1.201 1.174 1.140 1.121 1.101 1.078

NJ 16.678 16.222 15.778 15.519 15.241 14.892 14.858 14.819 14.766

OH 92.147 88.825 84.565 82.775 80.838 78.501 77.061 75.499 73.770

PA 110.196 106.388 101.664 99.598 97.364 94.653 93.188 91.596 89.822

VA 32.341 31.334 30.195 29.638 29.038 28.297 28.040 27.757 27.433

WV 65.266 62.818 59.587 58.277 56.857 55.154 53.986 52.720 51.325

Note: The mass-based targets reported in this table are based on the supporting data file for
CPP compliance from PJM (2016) and are based on electric generating units in the PJM footprint
for each state noting that PJM covers only parts of IL, IN, KY, and NC. The rate-based targets
reported in panel (b) are from the Appendix 5-State Goals sheet in CPP State Goal Visualizer
spreadsheet. A detailed spreadsheet with the calculation of the mass-based targets was provided
to the authors by PJM.
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Table 3: Clean Power Plan baseline generation for 2012

MWh (thousands) MWh (percent)

state coal gas oil total coal gas oil total

DE 1,413 6,672 1,079 9,164 15.41 72.81 11.77 100

IL 84,488 10,001 0 94,489 89.42 10.58 0.00 100

IN 96,335 12,839 3 109,178 88.24 11.76 0.00 100

KY 84,364 3,092 0 87,456 96.46 3.54 0.00 100

MD 16,298 677 2,892 19,867 82.04 3.41 14.56 100

NC 54,920 25,520 0 80,440 68.27 31.73 0.00 100

NJ 2,603 33,665 173 36,440 7.14 92.38 0.47 100

OH 86,345 23,687 384 110,416 78.20 21.45 0.35 100

PA 87,055 57,420 1,662 146,137 59.57 39.29 1.14 100

VA 15,671 36,292 344 52,307 29.96 69.38 0.66 100

WV 70,078 0 0 70,078 100.00 0.00 0.00 100

Note: The numbers in this table are based on existing and under-construction electric generating
units in the PJM footprint for each state in 2012 noting that PJM covers only parts of IL, IN, KY,
and NC. For units under construction, the baseline generation is calculated as capacity factor ×
8, 760 × summer capacity with a capacity factor of 0.60 for coal- and 0.55 for gas-fired units. A
detailed spreadsheet with the unit-level baseline generation was provided to the authors by PJM.

Table 4: List of strategic firms

Abbreviation Full Name

AEP American Electric Power

AES Applied Energy Services

DOM Dominion

DUKE Duke

EXE Exelon

FE First Energy

GEN Genon

NRG NRG

PPL Pennsylvania Power and Light

PSEG Public Service Enterprise Group
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Table 5: Fringe supply

(1) (2) (3) (4)

Variable Log Level Sq. Root Cb. Root

Price 4,485.9443*** 99.5049*** 1,432.4503*** 4,035.5585***

(1,274.8795) (34.6896) (419.2847) (1,127.8839)

CDD -97.4268 -124.8973 -124.4694 -118.9736

(137.1025) (162.0668) (150.4534) (145.9993)

CDD Sq. 11.1935 9.9947 10.3957 10.6223

(6.8215) (7.7162) (7.2300) (7.0770)

HDD 14.7302 52.9018 45.2620 37.9005

(61.2242) (87.4259) (74.2798) (69.3752)

HDD Sq. -0.9712 -2.0324 -1.8877 -1.6781

(1.6612) (2.5088) (2.0611) (1.8983)

Constant -2,465.7182 2,689.1103*** 534.2531 -1,398.0739

(1,762.4441) (682.6402) (1,054.6609) (1,489.6102)

Observations 119 119 119 119

R-squared 0.7979 0.7487 0.7694 0.7783

Year FE Yes Yes Yes Yes

Month FE Yes Yes Yes Yes

Note: The table presents two-stage least squares coefficients estimates for various functional form
specifications of price using monthly data for 2003–2012. In all 4 specifications, the dependent
variable, fringe supply, is in levels, and we include year and month (seasonal) fixed effects. We
use CDD (HDD) to refer to cooling (heating) degree days. The results reported in the paper are
based on the log specification reported in column (1). Standard errors in parentheses are corrected
for heteroskedasticity. The asterisks denote statistical significance as follows: 1% (***), 5%(**),
10%(*).
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Table 6: Target policy equation

(1) (2)

Variable coal gas

Entry 1,070.1457*** 442.6195***

(335.6758) (101.1281)

Capacity own 0.9547*** 1.0184***

(0.1292) (0.0832)

Capacity rival -0.0057 -0.0090

(0.0104) (0.0100)

Price coal -361.3379** 161.7350

(157.0343) (183.6855)

Price gas 225.2231* 8.1209

(118.0989) (18.8208)

Permit price SO2 -444.6747** -118.9773*

(222.5244) (71.4921)

Permit price NOx -1,940.8544* 370.9387

(1,158.7378) (558.2496)

Observations 169 280

R-squared 0.4571 0.6714

Note: The estimates are based on annual operator-level data for 2003–2012. Standard
errors in parentheses are corrected for heteroskedasticity. The asterisks denote statistical
significance as follows: 1% (***), 5%(**), 10%(*).
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Table 7: Cost per megawatt of gas-fired capacity ($/MW)

Fuel est. s.e.

gas 1,389,957 32,345

Note: The reported standard error is calculated resampling moment inequalities and ignores
any 1st-stage estimation error.

Table 8: Investment in gas-fired capacity

Company Size Counts

AEP 0.000 0

AES 2.398 12

DOM 0.000 0

DUK 0.000 0

EXE 2.843 15

FE 1.704 7

GEN 0.573 2

NRG 2.552 12

PPL 0.852 3

PSEG 0.000 0

TOTAL 10.921 51

Note: The numbers reported are for 2013–2062. A company is assumed to invest once a
year. For example, AES invested 12 times during 2013–2062. Size is measured in thousand
megawatt (MW).
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Table 9: Summary of outcomes for alternative investment scenarios

BAT Electricity Generation Investment CO2

Capacity Price Costs Costs Emissions

Scenario MW $/MWh $ billion $ billion tons million

SOCPLAN 34,250 34 75.4 30.6 374.2

NST-SIN 48,150 28 59.5 47.2 414.3

NST-SEP 51,300 27 58.5 48.9 419.3

1F-SIN 4,000 89 212.9 1.3 270.1

1F-SEP 11,300 86 185.9 5.1 258.1

2F-SIN 10,400 72 161.8 14.5 298.5

2F-SEP 17,850 67 128.9 24.6 311.7

Note: BAT refers to best available technology. We report a quantity-weighted average price of electricity
and a quantity-weighted average of CO2 emissions. The present discounted dollar values are calculated
using a discount factor of 0.90 and assuming that the 2030 values correspond to the steady state values.
A brief description of the scenario abbreviations is available in Table 10.

Table 10: Description of alternative investment scenarios

Abbreviation Description

SOCPLAN Social planner

NST-SIN Non-strategic investment, single CO2 market

NST-SEP Non-strategic investment, separate CO2 market

1F-SIN Single-firm investment, a single CO2 market

1F-SEP Single-firm investment, a separate CO2 markets

2F-SIN Two-firm investment game, single CO2 market

2F-SEP Two-firm investment game, separate CO2 markets

Note: the table provides a brief description of the alternative investment scenarios that pertain to different
market structures and regulatory regimes and are discussed in detail in Section 5.
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8 Figures

Figure 1: Static versus Dynamic inefficiency
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(b) Dynamic analysis

Note: The figure shows electricity generation cost with a single and separate externality markets
for different capacity levels. Panel (a) refers to the static analysis for which we compare costs
holding fixed the level of capacity. Panel (b) refers to the dynamic analysis where we take into
account optimal investment levels. Optimal capacity with a single market (K∗) is lower than
the optimal capacity with separate markets (K∗∗) due to the greater investment incentives in the
latter. Accounting for optimal investment decreases the difference in costs between the two types
of markets from Csep(K

∗)− Csin(K∗) to Csep(K
∗∗)− Csin(K∗).
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Figure 2: Area covered by the Pennsylvania-Jersey-Maryland (PJM) Interconnection

 

 

 

Source: http://ieefa.org/pjms-reform/ 

Source: http://ieefa.org/pjms-reform/
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Figure 3: Overview of the model timing

2012 −−−−−−−−−−−−−−−→ 2013 −−−−−−−−−−−−−−−→ 2014

Demand parameters
y

Demand parameters

Cost functions︸ ︷︷ ︸ Cost functions︸ ︷︷ ︸
Electricity Market Investment Electricity Market

Note: the bold text emphasizes the fact that investment in 2013 affects the cost functions in 2014.
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Figure 4: Equilibrium invariance with inframarginal unitsFigure 4: Merit order invariance with inframarginal units
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Figure 4: Merit order invariance with inframarginal units
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(b) Invariance to averaging

Note: Let the first two steps in panel (a) represent new capacity (i.e. capacity added after 2013).
Panel (a) illustrates the market equilibrium when we retain all the information each time we add
a new plant. Panel (b) instead only keeps track of the cumulative size of added capacity and
updates a weighted-average cost of these new additions. As long as new capacity is infra-marginal,
equilibrium quantities, prices and profits are invariant to averaging of these plants.
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Figure 5: Updating the marginal cost curveFigure 3: Best available technology
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Note: The step function Ct (black solid line) indicates the marginal cost curve prior to
investment at time t. The step function Ct+1 (gray dashed line) indicates the marginal cost
curve following a hypothetical investment of 400 MW in best available technology with a
cost of $10/MWh. The vertical distance between the two curves at their origin shows the
improvement in marginal costs between the available technology at time t and time t + 1.

3

Note: The step function ct (black solid line) indicates the marginal cost curve prior to
investment at time t and is constructed by ordering available sources to serve demand in
terms of their marginal costs. The sources with the lowest (highest) costs are ordered first
(last). The step function ct+1 (gray dashed line) indicates the marginal cost curve following
a hypothetical investment of 400 MW in best available technology with a cost of $10/MWh.
The vertical distance between the two curves at their origin shows the improvement in
marginal costs between the available technology at time t and time t+ 1.
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Figure 6: Paths of exogenous variables, 2013–2062
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Figure 7: BAT Investment in gas-fired capacity, 2013–2062
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Note: BAT refers to best available technology. The figure shows only years for which there is
investment. We divide firms in two groups and report their investment levels in two panels so that
the figure is more legible. In the 1st group, and consistent with the entries of Table 8, only Applied
Energy Services (AES) and Exelon (EXE) invest.
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Figure 8: Paths of endogenous variables, 2013–2062
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Note: BAT refers to best available technology.
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Figure 9: Electricity prices implied by the model compared to NYMEX futures
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Figure 10: Regional CPP mass-based targets
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Note: The mass-based target in this figure is based on the supporting data file for CPP compliance
from PJM (2016) and are based on electric generating units in the PJM footprint for each state
noting that PJM covers only parts of IL, IN, KY, and NC. We plot the sum of state mass-based
targets from panel (a) of Table 2.
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Figure 11: Static analysis

(a) Cost of generating electricity

(b) Static inefficiency

Note: Panel (a) plots the present discounted value of electricity generation costs for the separate
and single CO2 markets scenarios as a function of best available technology (BAT) capacity. We
keep the BAT capacity fixed from 2013 onwards for both scenarios in this analysis. Panel (b) plots
the difference in present discounted value of electricity generation costs between the two scenarios
as a function of BAT capacity.
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A Online Appendix
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A.1 Data

Our empirical analyses require us to track the expansion of the PJM footprint over time due

to zone additions. We identified the additions using publicly available data on estimated

hourly load by region in the PJM Markets & Operation website, as well as reviewing the

PJM State-of-The-Market (SOM) Reports from Monitoring Analytics; the reports are also

publicly available.32

We identified firms using the operator and owner fields in the EIA-860 data, which we

complemented with information from the Edison Electric Institute (EEI), the companies’

websites and annual reports, and the SNL merger database.33 We identified plants in the

PJM footprint using the approach in Knittel et al. (2019).

Monthly plant-level fuel prices are available from EIA-423, FERC-423, and EIA-923.

We also obtained access to confidential data for non-utility plants. Generation and fuel

consumption data are from EIA-906/920 and EIA-923 beginning in 2008.34 The annual data

on plant operating expenses are from SNL.35

Annual plant-level capacities are from EIA-860. The capacities in EIA-860 are recorded

at the electric generating unit level and a power plant may have several units. When needed,

we sum the capacities of all units that belong to the same plant. We use the primary energy

source for each unit to calculate coal- and gas-fired capacities.36 We account for intermittency

of renewables by using the capacity factors from Table 6.7.B from the EIA Electric Power

Monthly for December 2014, averaged for the period 2008 through 2013. These factors are

highly comparable to the ones we identified in PJM reports regarding resource adequacy

planning.

System-wide real-time metered load data as consumed by the service territories and

locational marginal prices are available from the PJM website. The data are available at

32See http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx and http:

//www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2015.shtml. Major zone addi-
tions took place in 2004 and 2005 when Comed, Dayton, American Electric Power, Duquense, and Dominion
joined PJM. The next major additions were in 2011 and 2012, when American Transmission Systems (First
Energy) and Duke Energy Ohio & Kentucky joined PJM. The latest addition was East Kentucky Power
Cooperative in 2013.

33See http://www.eei.org/about/members/uselectriccompanies/Pages/usmembercolinks.aspx for
the U.S. Member Company links of EEI. Note that we have also taken into account mergers that took
place during the period that is relevant for our analysis (e.g., the Mirant/RRI merger to form GenOn
Energy in Dec-2010, and the NRG Energy/GenOn Energy merger in Dec-2012.

34See http://www.eia.gov/electricity/data/eia423/ and http://www.eia.gov/electricity/

data/eia923/.
35It is the field Unit Non-Fuel O&M reported under the Whole Plant Operating Annual-Operating Ex-

penses in the Power Plants database.
36 See http://www.eia.gov/electricity/data/eia860/. The total generating capacity for PJM calcu-

lated using these data is within 5% of the generating capacity reported in PJM State-of-the-Market Reports
for 2003–2012.
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an hourly frequency. In the case of load, we use total load during a month. In the case of

prices, we calculate a monthly load-weighted average. We calculate net imports using data

on real-time scheduled interchange from PJM for the late part of the analysis.37

The SO2 and seasonal NOx permit prices are from Evolution Markets, a permit brokerage

firm we identified from the EPA website.38 The Weather used in the estimation of the fringe

supply equations are from the National Oceanic and Atmospheric Administration (NOAA).39

A.2 Descriptive Statistics

Tables A1 and A2 provide information regarding the number of plants, generation, and

capacity that the strategic firms account for between 2003 and 2012. The number of plants

for the strategic firms increased from 47 in 2003 to 109 in 2012. We also see an increase in

the number of both coal- and gas-fired units for strategic firms. In the former case, we see

an increase from 55 to 135 units. In the latter case, we see an increase from 107 to 262 units.

The strategic firms’ share of coal-fired (gas-fired) capacity increased (decreased) from 77%

(60%) in 2003 to 85.5% (50%) in 2012. During this period, the strategic firms’ share of coal-

(gas-) fired generation increased from 78% (42%) to 87% (51%).

Summary statistics related to the cost functions for each of the strategic firms in our

model for 2012 are available in Table A3. We report summary statistics for 2012 given

that this is the year that is relevant for the estimation of our structural model using monthly

unit-level observations noting that a power plant may have more than one electric generating

unit.40 A casual look at the table shows substantial variation both across and within firms,

which we preserve when we estimate our dynamic model.

In Table A4, we show the coal- and gas-fired capacity for each of the 10 strategic firms

for 2003–2012. Several patterns emerge that offer support for our modeling assumptions.

Investment is lumpy and, in general, we see more action in gas-fired capacity than in coal-fired

capacity. Capacity changes take place only in a subset of years for each of the strategic firms,

and they account for a notable fraction of existing capacity. For example, AEP increased

its coal-fired capacity from around 15,300 MW in 2006 to 21,000 MW in 2007, an increase

37See http://www.pjm.com/markets-and-operations/ops-analysis/historical-load-data.aspx

and http://www.pjm.com/markets-and-operations/energy/real-time/lmp.aspx, for the load and
price data, respectively. See http://www.pjm.com/markets-and-operations/ops-analysis/nts.aspx

for net tie schedule (NTS) data. Erin Mansur generously provided us all NTS data for 1999–2010 with the
exception of 2007–2009, which we are missing. We impute values for each month in this 3-year period using
the average of 2006 and 2010. For example, we use the average of Jul-2006 and Jul-2010 to construct the
monthly value for Jul-2007.

38See http://www.evomarkets.com/environment/emissions_markets.
39See http://www.ncdc.noaa.gov/cdo-web/search/#t=secondTabLink
40The all-inclusive cost of 1 MWh of electricity (cost) exhibit variation by unit and month. The fuel prices

exhibit variation by plant and month. The VOM costs and heat rates exhibit variation by plant only.
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of approximately 37%. AEP also increased its gas-fired capacity from 1,700 MW in 2006 to

3,237 MW in 2012. As another example, the gas-fired capacity of Genon (GEN) increased

from 1,919 MW in 2008 to 2,839 in 2009. Moreover, the generation portfolio differs across

firms. AEP dominates coal followed by First Energy (FE) and Genon. The three companies

account, on average, for 29%, 23%, and 14% of the coal-fired capacity in each year between

2003 and 2012. PSEG, Dominion (DOM), and AES, dominate gas accounting for 26%, 23%,

and 12% of the capacity, on average, during the same 10-year window.

A.3 Endogenous State Variables

In Figure A1, we first show time-series plots of coal and gas capacity in panels (a) and (b).

Given the absence in investment, coal capacity exhibits no variation with AEP accounting for

about 1/3 of the approximately 52,000 MW of coal-fired capacity, followed by First Energy

and Genon, each accounting for around 15%. Dominion accounts for 10%, while the share

of the remaining firms is below 10%. In the case of gas, Dominion, PSEG, AEP, and Duke

(DUK) control most of the capacity despite the lack of investment. Genon invests for the

first time in 2013 and then again in 2056. PPL also invests in 2013 for the first time and

then again in 2050. AES, Exelon (EXE), First Energy, and NRG invest at various points in

time during the 50-year period and their combined share of gas capacity increases from 24%

in 2013 to 35% in 2062.

Due to lack of investment, there is no improvement in the heat rate of coal-fired capacity,

with NRG and PSEG being clear outliers with heat rates exceeding 11.5 MMBtu/MWh

(panel (c)). Both heat rates are almost 15% higher than the lowest heat rate of 10.1 that

we see for First Energy and PPL. In the case of gas, as expected, we see no improvement in

heat rates for AEP, Dominion, Duke, and PSEG due to lack of investment (panel (d)). The

firms that invest, however, enjoy a significant improvement in their heat rates.

In Figure A2, we first provide the time-series plots of coal and gas generation in panels

(a) and (b), respectively. Dominion, one of the two firms with the largest amounts of gas-

fired generation, after experiencing a decrease of 25 million MWh between 2013 and 2032,

recovered reaching 49 million MWh by 2062. For PSEG, which is the next largest player

in gas-fired generation, the recovery after the significant decrease of 14 million MWh early

in the sample, the recovery is not as strong as that for Dominion. The remaining firms

all generally experience an increase in gas-fired generation. Duke barely had any gas-fired

generation up until 2030, but it reaches 25 million MWh by 2062.

AEP is leading coal-fired generation with more than 100 million MWh of coal-fired ca-

pacity in every year between 2014 and 2062 reaching 140 million MWh by the end of the
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50-year window. Genon, the second largest player in coal-fired generation, experiences a

significant increase in coal-fired generation from 16 million MWh in 2013 to 60 million MWh

in 2062. We also see an increase in coal-fired generation for Dominion, Duke, and PPL.

Duke enjoys the highest profits among all strategic firms during the entire 50-year period

in panel (c). Duke also enjoys the lowest costs followed by Dominion with the remaining

firms experiencing higher costs during the entire period. In the case of Duke, low costs

explain the large profits. AEP’s large profits are driven by its large volume of coal-fired

generation, while those for Dominion by its large volume of gas-fired generation.

A.4 Investment Cost Estimation

First Stage

For the first-stage investment policy functions, we use the (S,s) model, which was orig-

inally introduced in the study of inventories and has received attention in the durable-

consumption (e.g., Attanasio (2000), Eberly (1994)) and investment literature (e.g., Ca-

ballero and Engel (1999) and Ryan (2012)). Fixed costs and empirical evidence suggest

lumpy investment behavior in electricity markets; periods of inactivity are followed by no-

table changes in capacity.

The (S,s) model can accommodate such firm behavior via a target equation, T (·), and a

band equation, B(·). The former dictates the level of capacity the firm adjusts to conditional

on making a change. The latter dictates when the firm will make a change to its current level

of capacity. Using Kjt to denote the capacity level for firm j at time t, the policy function

for the incumbents is given by:

Kjt+1 =

Kjt, T (Kjt)−B(Kjt) < Kjt < T (Kjt) +B(Kjt)

T (Kjt), otherwise.
(A1)

Entrants are assumed to adjust to T (Kjt). The specification of the target equations resemble

those in Fowlie et al. (2016):

T (Kjt) = λT1 1[entrant],jt + λT2Kjt + λT3 K−jt + λT4 Pt + εTjt. (A2)

In terms of notation, K−jt is the rivals’ capacity and 1[entrant],jt is a dummy variable that

equals one if firm j enters the market at time t, and zero otherwise. The vector Pt includes

fuel costs and emissions permit prices.41 Finally, the idiosyncratic errors is εTjt.

In the case of the band, we set it equal to 10% of existing capacity. The implication

41Permit prices for SO2 and NOx were non-zero during the period 2003–2012 used for estimation.
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is that there is no adjustment to capacity in the next period if the target level is within

that range. We tried different values, but the investment cost parameters do not seem to be

sensitive to that threshold.

Policy Equations Results

Table 6 provides the estimates of the target policy equations. In order to increase the

sample and have enough variation in the data, we estimate the target equations for both coal

and gas using annual operator-level data for 2003–2012 including all operators and not just

those associated with the 10 strategic holding companies in Table 4. Based on the R2 values

reported at the bottom of the table, the fit is better for gas (0.67) than for coal (0.46).

Moving to the regression estimates, the coefficient for the entry dummy is positive and

significant at the 1% level in both equations. The target capacity is strongly affected by the

current capacity—the associated coefficient is significant at 1% for both fuels. Although the

capacity of the rivals has the expected negative sign, it is not significant for both coal and

gas. The price of coal has a negative effect on the coal target capacity that is significant at

the 5% level, while the price of gas has a positive effect that is significant at the 10% level.

The prices of the two fuels have no significant effect on the gas target capacity. The SO2 and

seasonal NOx permit prices have negative effects on coal target capacity that are significant

at the 5% and 10% levels, respectively. The SO2 permit price has a negative effect on the

gas target capacity that is significant at the 10% level. The seasonal NOx permit price has

no effect on the gas target capacity.

Second Stage

Firms have perfect foresight over the future path of the exogenous state variables. This

can be seen as a particular form of a Markov process if the state vector does not have the same

values at two different points in the future. With the estimates of the policy equations in

hand and evolution paths for the exogenous state variables, we estimate the set of structural

cost parameters θ for which the observed policy for firm i is the best response to its rivals’

observed policies. We begin by estimating the firms’ value function using forward simulation

and considering the following two cases. In the first case, all firms follow the observed policy,

from which the “true” value function will emerge. In the second case, all firms except for firm

j follow the observed policies and firm j follows a slightly modified version of its observed

policy.

Denote L alternative policies as {σlj}Ll=1 and the observed policy as σ0
j . For the lth

alternative policy, we simulate each firm’s decisions over NT periods using the policy and
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transition functions from Stage I, and compute the object:

Ŵj(s;σlj,σσσ
0
−j) =

NT∑
t=1

βt
(
πljt(at, st)− Γljt((at, νjt))

)
. (A3)

We then rewrite the MPNE condition (17) for the lth alternative policy as:

gj,l(θ) =
[
Ŵj(s;σlj,σσσ

0
−j)− Ŵj(s;σ0

j ,σσσ
0
−j)
]
· θ (A4)

We draw L = 20 alternative policies by adding noise to the optimal policy function. For each

of the 10 strategic firms, we perturb the policy function by adding or subtracting 5 MW of

generating capacity to the amount resulting from the real policy. We also assume β = 0.90

and NT = 50 years. We then search for the parameter vector such that profitable deviations

from the optimal policies are minimized:

min
θ

Q(θ) =
1

NL

N∑
j=1

L∑
l=1

1 {gj,l(θ) > 0} gj,l(θ)2. (A5)

We calculate standard errors using 1,000 bootstrap replications by resampling from the

moment inequalities and ignoring the 1st stage estimation error as in Bajari et al. (2013).

In what follows, we show that the additive nature of the perturbation is consistent with

the heterogeneity assumed for the investment cost function. Noting that we assume linear

investment costs and we focus on investment in gas-fired capacity only, the marginal cost of

investment exhibits variation across firms and time:

Γjt = γjt × ingjt , (A6)

where γjt = γ + νjt with νjt being a privately known shock that is IID across firms and

time and follows some common distribution defined by its first two moments. Given that

firm i does not know the draw of its marginal cost of investment in the beginning of period

t when investment decisions are made, the per-period payoff function is given by:

Eνjt [πjt] = πjt − Eνjt
(
γjti

ng
jt

)
= πjt − Eνjt (γjt)Eνjt

(
ingjt
)
− Cov

(
γjt, i

ng
jt

)
= πjt − γEνjt

(
ingjt
)
− Cov

(
γjt, i

ng
jt

)
(A7)

For estimation, we consider additive positive and negative perturbations of the form ĩngjt =

ingjt +χ, where χ is a constant that is positive for the former and negative for the latter, such
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that the implied perturbed value function for firm j is given by:

Eνjt [π̃jt] = πjt − γEνjt
(̃
ingjt

)
− Cov

(
γjt, ĩ

ng
jt

)
= πjt − γ

(
Eνjt

(
ingjt
)

+ χ
)
− Cov

(
γjt, i

ng
jt

)
. (A8)

The last equality follows from the fact that Cov
(
γjt, i

ng
jt + χ

)
= Cov

(
γjt, i

ng
jt

)
. Importantly,

the moment condition, which will use the average difference between the value function based

on (A7) and the value function based on (A8) across perturbations, is not a function of the

covariance term as it cancels out once we calculate the difference. Therefore, the additive

perturbations allow us to infer the first moment of the heterogeneity in investment costs but

not the second.

A.5 Computational Details for the Counterfactuals

For the purpose of discussion, we focus on the vector of cumulative BAT capacities of each

firm in describing our state space.42 Guided by our estimates, we assume that the strategic

firms invest only in gas-fired capacity. Moreover, we only allow positive amounts of invest-

ment (no divestment) and assume that capacity does not depreciate. These assumptions are

reasonable if we think unused plants just remain idle, and that capacity is long-lived. With

these assumptions, we have that BAT capacity either increases or stays at its current level.

Finally, we assume that total BAT capacity across firms must be less than or equal 60,000

MW, which, if fully utilized, represents about 60% of total output.

We discretize the state space into a grid with 50 MW increments. Thus in the two player

case, our state space has 12012 = 1, 442, 401 points. We find that interpolating the BAT

capacity dimension over a small number of nodes does not capture well enough investment

behavior because the interpolation is too smooth relative to the step cost function.

The investment problem is non-stationary because prices, demand, new investment heat

rates, and CO2 targets change each year. To solve the model, we fix all exogenous variables

at their 2030 levels post 2030, and solve the associated stationary infinite-horizon problem.

This is motivated by the fact that we do not have published CPP targets beyond 2030. Once

we have the value functions for 2030, we proceed backwards, starting in 2029 and ending in

2013, noting that the exogenous variables change every year.

Computation for the equilibrium can be divided into two parts: (i) compute stage game

42The state vector technically includes the exogenous variables discussed in Section 4.2 and also weighted-
average heat rate of each firm’s cumulative BAT capacity. For the BAT heat rate dimension of the state
space, we use three nodes corresponding to the minimum, average, and maximum heat rates for 2013–2030.
We create a dense grid for the state along the BAT heat rate dimension using a cubic spline.
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profits for each firm, point in the state space, and year (2014-2029 and the infinite horizon

beginning 2030) which require simultaneous clearing of twelve markets (eleven CO2 and one

electricity), and (ii) given stage game profits, solve for the Markov Perfect Nash Equilibrium

(MPNE), i.e. a set of investment policy and value functions for each firm, point in the

state space, and year. With a discretized state space, we can do the first part separately

and also exploit parallel computing to solve for the stage game equilibrium for 24,520,817

(= 12012 points × 17 years) points. For the second part we tried standard value function

iteration approaches, including the parametric approximation method in Ryan (2012) and

Fowlie et al. (2016), but we could not make our solver converge even with lax tolerance, e.g.

10−5. Thus we follow a different approach described below.

We first discuss the algorithm to compute the stage game market equilibrium in Section

A.5.1 followed by a discussion of how we solve for the MPNE in Section A.5.2.

A.5.1 Stage Game Market Equilibrium

With regional CPP implementation, two markets have to clear simultaneously: (i) the whole-

sale market for electricity and (ii) the region-wide CO2 market. The need to look for a joint

solution to both markets arises due to the complementary nature of electricity output and

CO2 emissions. A change in the CO2 price affects the relative cost of the different fuels. This

in turn changes the relative position of each plant in the merit order of the aggregate elec-

tricity supply and, therefore, impacts the equilibrium in that market. With state-by-state

CPP implementation, there are 11 CO2 markets and 11 different CO2 prices. We now have

to clear these 11 markets together with the PJM wholesale market simultaneously.

Let qist denote the electricity output of source i located in state s at time t. In addition,

HRist is the associated heat rate and rist is the CO2 emission rate. The mass-based target

of CO2 emissions for state s is Est. Finally, let S denote the set of the 11 PJM states.

With regional implementation, the equilibrium carbon price is the solution to the follow-

ing problem:

PC
t = min{P :

∑
s∈S

∑
i∈s

(qist(P )×HRist × rist) ≤
∑
s

Est}. (A9)

With state-by-state implementation, the solution is given by the following vector of CO2

prices:

PC
t = min{P :

∑
i∈s

(qist(P)×HRist × rist) ≤ Est} ∀s ∈ S. (A10)

With state-by state implementation, the algorithm to solve the minimization problem is the
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following:

• Step 1: start with zero CO2 prices for all states and compute the PJM wholesale

market equilibrium.

• Step 2: If at least one state has excess emissions, proceed to Step 3; otherwise, end.

• Step 3: Increase the CO2 price of the state that has the most excess emissions by $1

per short ton.

• Step 4: Compute PJM wholesale equilibrium and check for excess emissions.

With regional implementation, we treat the entire PJM area as a single state and the

algorithm works in the same way.

A.5.2 Solving for the Markov Perfect Nash Equilibrium

To discuss how we compute the Markov Perfect Nash Equilibrium for our counterfactual

analysis, consider a simplified state space where K1 +K2 ≤ 2 and players can invest in unit

increments. Figure A4 illustrates the example.

Our approach is reminiscent of the Upwind Gauss-Seidel approach in dynamic program-

ming (Judd, 1998). We first start at the “edge” of the state space and then work backwards

as shown in panel (a). The points on the edge are absorbing states hence the values at these

points have the form πi(K1, K2)/(1 − β) where πi(·) is the stage game payoff at the given

state and β is the common discount factor. Given these values, we can then move backwards

to the point (1, 0).

As shown in panel (b), at (1, 0), we can either transition to (1, 0) (no investment), (2, 0)

(only player 1 invests) and (1, 1) (only player 2 invests). Since an MPNE is a set of policies

and values such that these form a Nash Equilibrium (NE) at the subgame defined by the state,

the transition from (1,0) is determined by the pure-strategy NE of the normal form game with

payoff matrix given in panel (c).43 This is the statewise Nash approach implemented in Chen

et al. (2009) (see also Doraszelski and Escobar (2010) and Abito et al. (2019)). The payoffs

Vi(2, 0) and Vi(1, 1) were already computed from the previous step. The payoff Vi(1, 0) is just

πi(1, 0) + βVi(1, 0) = πi(1, 0)/(1− β). The payoff Vi(2, 1) is technically undefined since this

is outside of our state space. To handle the indeterminacy and at the same time, guarantee

existence and uniqueness, we consider a sequential version of this normal form game where

player 1 first decides on x1 followed by player 2. See Bresnahan and Reiss (1990) Berry

43We find that it is more straightforward to solve for the Nash Equilibrium in a complete information
version of the normal form game and hence we set the privately-observed cost shocks to be equal to zero in
the counterfactuals.
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(1992) for early examples in static entry game setting, and, more recently, Abbring and

Campbell (2010) in an infinite-horizon setting.

A.6 New Source Complements

In the context of the Clean Power Plan, states can voluntarily include emissions from new

capacity in their CO2 targets to address leakage. To accommodate new capacity in the CO2

targets, the EPA provides an additional emissions budget, the New Source Complements

(NSCs) to Mass Goals under Section 111(d) of the Clean Air Act, which implies an upward

adjustment to the targets.44

To understand the implications of policies to address leakage, we simulate a single-firm

optimal investment scenario by taking the equilibrium CO2 prices from the scenario with

industry-profit maximizing and a single CO2 market (1F-SIN), but not exempting emissions

from BAT capacity from CO2 prices. Given that this approach is equivalent to adjusting the

CO2 targets, we use the term NSC to refer to this scenario.

Our results point to an alarming unintended consequence of policies like the NSCs that

are based on projected demand growth—that is, on anticipated investment—and not on

actual investment. As Adair and Hoppock (2015) point out, if firms do not invest in new

capacity ex post, the NSCs effectively reduce the stringency of the regulation by increasing

the emissions budget. In fact, we find that under the NSC, firms do not invest. An important

issue arises due to a one-sided commitment problem: the regulators commit to targets that

accommodate new capacity without firms’ commitment to build this new capacity. Once the

new targets are set and fixed, incentives to invest decrease and it is in the firms’ interest not

to invest in the first place.

More generally, the one-sided commitment problem provides a rationale for the differen-

tial regulatory treatment of new capacity relative to existing capacity, as embedded in the

design of the Clean Air Act (Sections 111(b) and (d)). To solve the commitment problem,

the regulator has to condition the additional emissions budget allocation on investment ac-

tually materializing and this new capacity being used. But this means that there will be a

separate accounting of emissions from new sources versus from existing ones, which would

necessitate different CO2 prices for new and existing sources.

44The EPA has developed a methodology for quantifying these NSCs that may be summarized as follows.
The EPA first calculates the incremental generation needed for each interconnection (Eastern, Western,
Texas) to satisfy projected growth in demand from 2012 levels. Following a series of adjustments, the
EPA apportions the remaining incremental generation to states on the basis of each state’s 2012 share
of the interconnection’s total generation. Finally, the EPA converts state-level generation to state-level
emissions using a predetermined rate (lbs/MWh). For a more detailed discussion of the NSCs, we refer
the interested reader to the Technical Support Documentation https://www.epa.gov/sites/production/

files/2015-11/documents/tsd-cpp-new-source-complements.pdf.
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Table A1: Number of plants and units by firm type

year
plants coal units gas units

non-strategic strategic non-strategic strategic non-strategic strategic

2003 73 47 53 55 109 107

2004 108 95 96 142 186 170

2005 149 107 138 160 265 186

2006 133 118 109 182 236 215

2007 118 107 71 149 229 229

2008 119 113 71 150 229 255

2009 119 114 70 153 231 262

2010 130 107 86 133 252 265

2011 139 114 81 153 300 251

2012 156 109 85 135 334 262

Table A2: Capacity and generation by firm type

all firms strategic firms

year
capacity generation capacity generation

coal gas coal gas coal % gas % coal % gas %

2003 26.03 16.43 157.50 13.76 76.74 60.04 77.91 41.83

2004 59.56 33.79 363.49 29.47 80.20 52.33 81.10 54.11

2005 67.85 38.27 421.99 39.42 76.98 48.72 79.01 36.48

2006 67.75 39.67 418.96 41.38 85.10 56.48 86.56 42.59

2007 55.63 42.43 357.58 51.40 89.30 54.46 88.83 52.54

2008 55.53 43.92 343.44 49.22 90.16 55.89 90.11 51.15

2009 56.80 45.68 293.38 62.42 90.34 56.74 90.58 51.76

2010 49.06 48.24 262.59 85.96 86.42 55.11 87.61 52.81

2011 57.06 51.94 284.40 106.89 88.04 48.84 90.40 48.67

2012 60.19 55.34 274.60 146.71 85.48 50.19 87.25 50.88

Note: capacity in thousand MW and generation in million MWh. The 4 rightmost columns of the
table show the percentage of capacity and generation by fuel type that strategic firms account for.
For example, strategic firms account for 76.74% of coal capacity and 60.04% of gas generation in
2003.
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Table A3: Summary statistics for strategic firms

firm obs units
cost fuel price VOM heat rate

mean s.d. mean s.d. mean s.d. mean s.d.

AEP 468 39 42.63 15.51 2.88 0.08 14.61 14.15 10.17 0.55

AES 168 14 36.12 3.26 3.34 0.08 10.27 1.67 10.16 0.89

DOM 276 23 68.10 22.67 3.58 0.17 35.33 18.29 10.22 0.39

DUK 108 9 51.16 1.06 2.52 0.11 26.30 0.00 10.36 0.23

FE 168 14 55.72 32.30 2.96 0.08 32.61 31.29 10.08 0.20

GEN 216 18 56.15 19.92 2.90 0.10 26.78 20.93 10.04 0.51

NRG 108 9 68.69 6.20 3.59 0.64 34.10 4.97 11.20 0.36

PPL 72 6 43.30 1.45 3.60 0.30 12.25 0.50 10.08 0.07

PSE 36 3 62.96 6.52 4.05 0.30 17.22 0.39 11.69 0.03

ALL 1620 135 50.03 22.28 3.04 0.34 22.68 21.33 10.16 0.49

(a) coal

firm obs units
cost fuel price VOM heat rate

mean s.d. mean s.d. mean s.d. mean s.d.

AEP 300 25 33.04 12.30 3.30 0.49 10.06 10.75 7.50 0.87

AES 180 15 78.83 37.66 5.18 1.51 11.82 0.00 13.00 0.47

DOM 576 48 49.09 25.48 4.07 0.75 19.83 21.77 8.14 1.45

DUK 264 22 49.93 7.28 2.91 0.52 30.88 0.00 7.36 0.53

EXE 96 8 69.07 7.15 4.11 0.49 9.65 0.00 14.45 0.00

FE 300 25 32.41 10.69 3.84 0.42 9.68 0.99 7.60 1.39

GEN 240 20 33.13 7.98 3.84 0.65 9.64 0.09 7.41 1.17

NRG 264 22 65.44 20.73 3.56 0.61 8.79 0.19 13.40 1.54

PPL 168 14 40.86 10.07 3.15 0.49 12.62 3.49 9.08 2.21

PSE 756 63 33.70 8.08 3.82 0.78 5.15 1.66 7.86 1.09

ALL 3144 262 40.19 15.73 3.55 0.78 14.77 14.03 7.81 1.28

(a) gas

Note: Cost refers to all-inclusive costs of producing 1 MWh of electricity ($/MWh). The fuel prices
are in $/MMBtu. The variable operations-and-maintenance (VOM) costs are in $/MWh. The heat
rate is in MMBtu/MWh. The mean and standard deviations reported are weighted by generation.
The statistics reported are based on data for the 10 strategic firms listed in the leftmost column.
An observation is an electric generating unit by month-of-sample combination in 2012. The full
names of the firms listed in the leftmost column are available in Table 4.
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Table A4: Capacity of strategic firms (MW, thousands)

firm 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

AEP 0.000 15.583 15.299 15.299 20.096 20.096 20.096 11.669 20.096 19.439

AES 0.378 3.899 3.899 3.899 3.664 3.664 3.664 3.893 3.893 3.893

DOM 0.000 5.504 5.504 5.504 5.575 5.575 5.575 5.495 5.495 6.163

DUK 0.000 0.000 0.000 4.025 0.000 0.000 0.000 0.000 0.000 3.810

EXE 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.354 0.000

FE 7.462 12.635 17.781 17.781 9.901 9.901 9.901 9.901 9.901 9.340

GEN 3.198 3.712 3.719 9.353 8.321 8.906 9.672 8.558 9.938 8.648

NRG 5.022 5.022 5.040 1.296 1.278 1.278 1.278 1.278 1.278 1.278

PPL 3.513 3.513 3.496 3.496 3.183 3.183 3.200 3.200 3.200 3.200

PSE 1.313 1.313 1.313 1.313 1.313 1.313 1.313 1.313 1.313 1.313

ALL 21.780 52.075 56.945 62.860 54.226 54.811 55.594 46.202 55.467 57.084

(a) coal

firm 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

AEP 0.000 0.000 1.700 1.700 3.237 3.237 3.237 3.237 3.237 3.915

AES 1.744 3.354 3.354 3.336 2.539 2.572 2.572 2.572 1.606 0.828

DOM 0.000 5.179 4.873 4.873 5.749 6.106 6.285 6.285 6.844 6.844

DUK 0.000 0.000 0.000 3.889 2.737 0.000 2.737 3.462 3.462 3.578

EXE 0.230 0.000 0.000 0.000 0.407 0.407 0.407 0.407 0.407 0.407

FE 1.355 1.756 2.225 2.552 1.825 1.852 1.834 1.834 1.834 1.719

GEN 0.876 0.326 0.326 1.564 1.919 1.919 2.839 2.839 2.839 2.839

NRG 0.087 0.060 0.144 0.100 0.000 0.841 0.951 0.951 0.951 0.951

PPL 0.000 0.000 0.000 0.000 0.550 0.644 0.644 0.639 0.099 2.577

PSE 4.786 5.445 4.524 5.710 5.710 5.710 5.710 5.710 5.255 5.574

ALL 9.077 16.121 17.146 23.724 24.672 23.286 27.214 27.934 26.532 29.232

(b) gas

Note: The full names of the firms listed in the leftmost column are available in Table 4.
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Table A5: PJM Real-Time Energy Market

year price load value

2003 $41.23 37,395 $13,506,131,646

2004 $44.34 49,963 $19,406,548,519

2005 $63.46 78,150 $43,444,335,240

2006 $53.35 79,471 $37,140,453,966

2007 $61.66 81,681 $44,119,306,030

2008 $71.13 79,515 $49,545,701,082

2009 $39.05 76,034 $26,009,558,652

2010 $48.35 79,611 $33,718,920,606

2011 $45.94 82,546 $33,219,349,982

2012 $35.23 87,011 $26,852,882,363

Note: The PJM real-time average hourly load (MWh) is from Table 2-30 of the PJM State of the
Market Report 2012 available at http://www.monitoringanalytics.com/reports/PJM_State_

of_the_Market/2018.shtml. The PJM real-time load-weighted average locational marginal price
(LMP) is from Table 2-38 of the same report. The entries in the rightmost column are based on
the authors’ calculation using value=8760×price×load.
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Figure A1: Paths of endogenous variables II, 2013–2062
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(d) gas heat rate

Note: The heat rates are weighted averages using capacity as weight. The full names of the firms
listed in the leftmost column are available in Table 4.
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Figure A2: Paths of endogenous variables III, 2013–2062
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Note: The profit from electricity sales exclude investment costs. The full names of the firms listed
in the leftmost column are available in Table 4.

66



Figure A3: Data and model predictions, 2003–2030
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Note: The vertical line indicates the first year of model predictions (2013). BAT refers to best
available technology. The full names of the firms listed in the leftmost column are available in
Table 4.
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Figure A4: Computing MPNE: Simplified Example
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Note: To illustrate how we compute the Markov Perfect Nash Equilibrium for our counterfactual
analysis, consider a simplified state space where K1 + K2 ≤ 2 and players can invest in unit
increments. We first start at the “edge” of the state space and then work backwards as shown in
panel (a). The points on the edge are absorbing states hence the values at these points have the
form πi(K1,K2)/(1−β) where πi(·) is the stage game payoff at the given state and β is the common
discount factor. Given these values, we can then consider the point (1, 0). At (1, 0), we can either
transition to (1, 0) (no investment), (2, 0) (only player 1 invests) and (1, 1) (only player 2 invests),
as in panel (b). The transition is determined by the pure-strategy Nash Equilibrium of the normal
form game with payoff matrix given in panel (c). Note that Vi(2, 1) is technically undefined since
this is outside of our state space. Moreover, existence and uniqueness of the pure-strategy NE is
not guaranteed. Thus we instead consider a sequential version of this normal form game where
player 1 first decides on x1 followed by player 2. This solves the existence and uniqueness problem,
and also the indeterminacy of Vi(2, 1) (i.e. Vi(2, 1) = Vi(2, 0)).
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